Citation: | Hu Jinjun, Ding Yitian, Zhang Hui, Jin Chaoyue, Tang Chao, 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338 |
Carranza, M., Buforn, E., Colombelli, S., et al., 2013. Earthquake Early Warning for Southern Iberia: A P Wave Threshold‐Based Approach. Geophysical Research Letters, 40: 4588-4593. https://doi.org/10.1002/grl.50903
|
Chen, Y. L., Jin, X., 2016. A Continuous Real⁃Time Method for Seismic Intensity Prediction. Earthquake Engineering and Engineering Dynamics, 36(6): 22-29 (in Chinese with English abstract).
|
Chu, D. P., Wan, B., Li, H., et al., 2021. Geological Entity Recognition Based on ELMO⁃C0NN⁃BiLSTM⁃CRF Model. Earth Science, 46(8): 3039-3048 (in Chinese with English abstract). doi: 10.12090/j.issn.1006-6616.2021.27.03.035
|
Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, 7: 197-387. https://doi.org/10.1561/2000000039
|
Festa, G., Zollo, A., Lancieri, M., 2008. Earthquake Magnitude Estimation from Early Radiated Energy. Geophysical Research Letters, 35(22): L22307. https://doi.org/10.1029/2008GL035576
|
Graves, A., Fernández, S., Gomez, F., et al., 2006. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In: Proceedings of the 23rd International Conference on Machine Learning. Association for Computing Machinery, New York, 369-376.
|
Hochreiter, S., Schmidhuber, J., 1997. Long Short⁃Term Memory. Neural Computation, 9: 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
|
Hoshiba, M., Kamigaichi, O., Saito, M., et al., 2008. Earthquake Early Warning Starts Nationwide in Japan. EOS, Transactions American Geophysical Union, 89: 73-74. https://doi.org/10.1029/2008EO080001
|
Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80: 717. https://doi.org/10.1785/gssrl.80.5.717
|
Kanamori, H., 2005. Real⁃Time Seismology and Earthquake Damage Mitigation. Annu. Rev. Earth Planet. Sci. , 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
|
Kingma, D. P., Ba, J., 2014. ADAM: A Method for Stochastic Optimization.
|
Kunugi, T., Aoi, S., Nakamura, H., et al., 2013. An Improved Approximating Filter for Real⁃Time Calculation of Seismic Intensity. Zisin, 2: 223-230. https://doi.org/10.4294/zisin.65.223
|
Liu, R. S., Xiong, M. P., Ma, Q., et al., 2021. Vulnerability Study for High Voltage Electrical Equipment in Substations Based on Instrumental Seismic Intensity. Journal of Natural Disasters, 30(2): 14-23 (in Chinese with English abstract).
|
Nazeri, S., Shomali, Z. H., Colombelli, S., et al., 2017. Magnitude Estimation Based on Integrated Amplitude and Frequency Content of the Initial P Wave in Earthquake Early Warning Applied to Tehran, Iran. Bulletin of the Seismological Society of America, 107: 1432-1438. https://doi.org/10.1007/978⁃3⁃642⁃55903⁃7_92
|
Otake, R., Kurima, J., Goto, H., et al., 2020. Deep Learning Model for Spatial Interpolation of Real‐Time Seismic Intensity. Seismological Research Letters, 91: 3433-3443. https://doi.org/10.1785/0220200006
|
Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New Τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44: 1724-1731. http://www.researchgate.net/profile/Peng_Chaoyong/publication/313653194_New_t_c_regression_relationship_derived_from_all_P-wave_time_windows_for_rapid_magnitude_estimation/links/59d21862a6fdcc181ad5e238/New-t-c-regression-relationship-derived-from-all-P-wave-time-windows-for-rapid-magnitude-estimation.pdf
|
Reimers, N., Gurevych, I., 2017. Optimal Hyperparameters for Deep LSTM⁃Networks for Sequence Labeling Tasks. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016GL071672
|
Sheen, D. H., Park, J. H., Chi, H. C., et al., 2017. The First Stage of an Earthquake Early Warning System in South Korea. Seismological Research Letters, 88: 1491-1498. https://doi.org/10.1785/0220170062
|
Sherstinsky, A., 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short⁃Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena, 404: 132306. https://doi.org/10.1016/j.physd.2019.132306
|
Srivastava, N., Hinton, G., Krizhevsky, A., et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15: 1929-1958. http://pdfs.semanticscholar.org/6c8b/30f63f265c32e26d999aa1fef5286b8308ad.pdf
|
Suárez, G., Espinosa Aranda, J. M., Cuéllar, A., et al., 2018. A Dedicated Seismic Early Warning Network: The Mexican Seismic Alert System (SASMEX). Seismological Research Letters, 89: 382-391. https://doi.org/10.1785/0220170184
|
Sun, D. Z., Zhang, R. P., Sun, B. T., 2018. Discussion on the Application of Instrumental Intensity for Seismic Intensity Assessment. Building Structure, 48(S2): 279-283 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JCJG2018S2057.htm
|
Wang, S., Jiang, J., 2015. Learning Natural Language Inference with LSTM. In: Proceedings of the Human Language Technologies: The 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg.
|
Wang, Y., Li, X., Li, L., et al., 2022. New Magnitude Proxy for Earthquake Early Warning Based on Initial Time Series and Frequency. Seismological Research Letters, 93: 216-225. https://doi.org/10.1785/0220210106
|
Wang, Z., Zhao, B., 2018. Method of Accurate⁃Fast Magnitude Estimation for Earthquake Early Warning: Trial and Application for the 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, 109: 227-234. https://doi.org/10.1016/j.soildyn.2018.03.006
|
Wu, Y., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95: 1181-1185. https://doi.org/10.1785/0120040193
|
Wu, Y. M., Zhao, L., 2006. Magnitude Estimation Using the First Three Seconds P‐Wave Amplitude in Earthquake Early Warning. Geophysical Research Letters, 33(16): L16312. https://doi.org/10.1029/2006GL026871
|
Xie, Y., Ebad Sichani, M., Padgett, J. E., et al., 2020. The Promise of Implementing Machine Learning in Earthquake Engineering: A State⁃of⁃the⁃Art Review. Earthquake Spectra, 36: 1769-1801. https://doi.org/10.1177/8755293020919419
|
Xu, Y., Lu, X., Cetiner, B., et al., 2021. Real‐Time Regional Seismic Damage Assessment Framework Based on Long Short‐Term Memory Neural Network. Computer‐Aided Civil and Infrastructure Engineering, 36: 504-521. https://doi.org/10.1080/13632469.2020.1826371
|
Yamamoto, S., Rydelek, P., Horiuchi, S., et al., 2008. On the Estimation of Seismic Intensity in Earthquake Early Warning Systems. Geophysical Research Letters, 35(7): L07302. https://doi.org/10.1029/2007GL033034
|
Yu, Y., Si, X., Hu, C., et al., 2019. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31: 1235-1270. https://doi.org/10.1162/neco_a_01199
|
Zhang, W., Li, H., Li, Y., et al., 2021. Application of Deep Learning Algorithms in Geotechnical Engineering: A Short Critical Review. Artificial Intelligence Review, 54: 5633-5673. https://doi.org/10.1007/s10462⁃021⁃09967⁃1
|
Zhang, W., Phoon, K., 2022. Editorial for Advances and Applications of Deep Learning and Soft Computing in Geotechnical Underground Engineering. Elsevier, 14: 671-673. https://doi.org/10.1016/j.jrmge.2022.01.001
|
Zhao, Z., Zheng, P., Xu, S., et al., 2019. Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30: 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
|
Zhu, J., Li, S., Song, J., et al., 2021. Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network. Frontiers in Earth Science, 9: 341. https://doi.org/10.3389/feart.2021.653226
|
Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold⁃Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183: 963-974. https://doi.org/10.1111/j.1365⁃246X.2010.04765.x
|
Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
|
陈以伦, 金星, 2016. 一种持续实时预测仪器地震烈度的方法. 地震工程与工程振动, 36(6): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201606003.htm
|
储德平, 万波, 李红, 等, 2021. 基于ELMO⁃CNN⁃BiLSTM⁃CRF模型的地质实体识别. 地球科学, 46(8): 3039-3048. doi: 10.3799/dqkx.2020.309
|
刘如山, 熊明攀, 马强, 等, 2021. 基于仪器地震烈度的变电站高压电气设备易损性研究. 自然灾害学报, 30(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202102002.htm
|
孙得璋, 张仁鹏, 孙柏涛, 2018. 浅谈仪器烈度在地震烈度评定中的应用. 建筑结构, 48(S2): 279-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2018S2057.htm
|
左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
|