• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Lei Mi, Zhou Jinlong, Zhou Yinzhu, Sun Ying, Han Shuangbao, Liu Jiangtao, Lu Han, Bai Fan, Yan Zhiyun, 2024. Migration and Transformation Mechanism of High Arsenic Groundwater in Oasis Belt in Middle Part of Northern Piedmont of Tianshan Mountain. Earth Science, 49(1): 253-270. doi: 10.3799/dqkx.2022.349
    Citation: Lei Mi, Zhou Jinlong, Zhou Yinzhu, Sun Ying, Han Shuangbao, Liu Jiangtao, Lu Han, Bai Fan, Yan Zhiyun, 2024. Migration and Transformation Mechanism of High Arsenic Groundwater in Oasis Belt in Middle Part of Northern Piedmont of Tianshan Mountain. Earth Science, 49(1): 253-270. doi: 10.3799/dqkx.2022.349

    Migration and Transformation Mechanism of High Arsenic Groundwater in Oasis Belt in Middle Part of Northern Piedmont of Tianshan Mountain

    doi: 10.3799/dqkx.2022.349
    • Received Date: 2022-06-16
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • Junggar Basin is a typical inland basin with high arsenic groundwater distribution. Groundwater is an important drinking water source in the basin. Regional water supply safety is at risk. Migration and transformation of high arsenic groundwater need to be further investigated. In this study, the oasis belt in the middle part of the northern piedmont of Tianshan Mountain was taken as the research area. Semivariogram model and UNMIX source analysis model were used to analyze the distribution of arsenic in groundwater and the source contribution rate of groundwater chemical indexes, and influencing factors of arsenic migration. Transformation and enrichment in high arsenic groundwater in the typical profile were analyzed in combination with geological conditions, occurrence environment and hydrogeochemical action. Results show that groundwater in the study area is generally freshwater with weak alkaline and slightly reduced environment. Groundwater As concentration ranges between ND and 887.0 μg·L-1, with an average of 11.2 μg·L-1. Hydrochemical types of high arsenic groundwater (ρ (As) > 10 μg·L-1) are mainly HCO3·SO4·Cl⁃Na (HSL⁃N) and HCO3·SO4⁃Na (Na·Ca) (HS⁃N (NC)) types. Proportions of high arsenic groundwater in single-structure phreatic water, phreatic water in confined water area, and confined water are 0.4%, 6.4%, and 18.6%, respectively. Contribution rates of native mineral source, rock salt mineral source, soil input-human emission source, sulfuric-carbonate mineral source and environmental source to groundwater hydrochemical indexes are 11.3%, 21.1%, 23.1%, 23.4% and 21.1%, respectively. Arsenic species in 24 groups of a total of 25 groundwater samples of typical profiles is only As (Ⅴ) (96.0% of the sampling sites). From piedmont plain to alluvial plain, along groundwater flow, the variation trend of groundwater total arsenic concentration firstly increased and then decreased. Arsenic enrichment in occurrence environment is affected by groundwater hydrochemical indexes including pH, Eh, HCO3- and PO43-, which is also related to geological, hydrogeological conditions, organic matter degradation, and dissolution.

       

    • loading
    • Abdelrady, A., Sharma, S., Sefelnasr, A., et al., 2020. Characterisation of the Impact of Dissolved Organic Matter on Iron, Manganese, and Arsenic Mobilisation during Bank Filtration. Journal of Environmental Management, 258: 110003. https://doi.org/10.1016/j.jenvman.2019.110003
      An, F., Zhu, Y. F., 2009. Significance of Native Arsenic in the Baogutu Gold Deposit, Western Junggar, Xinjiang, NW China. Chinese Science Bulletin, 54(10): 1744-1749. https://doi.org/10.1007/s11434-009-0086-6
      Cao, W. G., Yang, H. F., Gao, Y. Y., et al., 2020. Prediction of Groundwater Quality Evolution in the Baoding Plain of the SNWDP Benefited Regions. Journal of Hydraulic Engineering, 51(8): 924-935 (in Chinese with English abstract).
      Cao, Y. S., Guo, H. M., Ni, P., et al., 2017. Influences of Sediments Geochemical Characteristics and Land Utilization on Groundwater Arsenic Activities. Earth Science Frontiers, 24(2): 274-285 (in Chinese with English abstract).
      Chen, T. D., Chen, X. G., Wang, W. K., et al., 2009. Investigation and Evaluation of Groundwater Resources and Environmental Problems in Junggar Basin. Geological Publishing House, Beijing, 47-64 (in Chinese).
      Deng, Y. M., Wang, Y. X., Li, H. J., et al., 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract).
      Gao, Z. P., Jia, Y. F., Guo, H. M., et al., 2020. Quantifying Geochemical Processes of Arsenic Mobility in Groundwater from an Inland Basin Using a Reactive Transport Model. Water Resources Research, 56(2): e2019WR025492. https://doi.org/10.1029/2019WR025492
      Gulgundi, M. S., Shetty, A., 2019. Source Apportionment of Groundwater Pollution Using Unmix and Positive Matrix Factorization. Environmental Processes, 6(2): 457-473. https://doi.org/10.1007/s40710-019-00373-y
      Guo, H. M., Ni, P., Jia, Y. F., et al., 2014. Types, Chemical Characteristics and Genesis of Geogenic High-Arsenic Groundwater in the World. Earth Science Frontiers, 21(4): 1-12 (in Chinese with English abstract).
      Guo, Q., Guo, H. M., Yang, Y. C., et al., 2014. Hydrogeochemical Contrasts between Low and High Arsenic Groundwater and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Northern Yinchuan Basin, P. R. China. Journal of Hydrology, 518: 464-476. https://doi.org/10.1016/j.jhydrol.2014.06.026
      Hong, L., 1983. A Preliminary Study on the Diseases and Formation Environment of High Fluoride and High Arsenic Water in Chepaizi Area, North Kuitun, Xinjiang. Environmental Protection of Xinjiang, 5(1): 22-28 (in Chinese).
      Hou, J., 2018. Research of Evolution of Groundwater Quality and Occurrence Mechanism of Trace Inorganic Components in Shihezi Area (Dissertation). Xinjiang Agricultural University, Urumqi (in Chinese with English abstract).
      Hug, S. J., Leupin, O. X., Berg, M., 2008. Bangladesh and Vietnam: Different Groundwater Compositions Require Different Approaches to Arsenic Mitigation. Environmental Science & Technology, 42(17): 6318-6323. https://doi.org/10.1021/es7028284
      Hug, S. J., Winkel, L. H. E., Voegelin, A., et al., 2020. Arsenic and Other Geogenic Contaminants in Groundwater⁃A Global Challenge. Chimia, 74(7): 524-537. https://doi.org/10.2533/chimia.2020.524
      Kuang, J., 2005. Palaeohighs and Targets for Petroleum Exploration in Junggar Basin. Xinjiang Petroleum Geology, 26(5): 502-509 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3873.2005.05.008
      Lei, M., Zhou, J. L., Liang, X., et al., 2022. Hydrochemical Characteristics of Pore Water and Genesis of Soda Water in the Middle of the Northern Piedmont of Tianshan Mountain, Xinjiang. Earth Science, 47(2): 674-688 (in Chinese with English abstract).
      Liu, Y. B., 2018. Nitrate Distribution and Source Apportionment in Surface and Groundwater in Manas River Basin Oasis (Dissertation). Shihezi University, Shihezi (in Chinese with English abstract).
      Niu, S. Y., Sun, A. Q., Li, H. Y., et al., 2005. Evolution of Crust-Mantle and Its Eco-Environmental Effects in Zhangjiakou-Xuanhua Region. Earth Science Frontiers, 12(4): 597-606 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.04.032
      Pi, K. F., Wang, Y. X., Xie, X. J., et al., 2015. Geochemical Effects of Dissolved Organic Matter Biodegradation on Arsenic Transport in Groundwater Systems. Journal of Geochemical Exploration, 149: 8-21. https://doi.org/10.1016/j.gexplo.2014.11.005
      Podgorski, J. E., Eqani, S., Khanam, T., et al., 2017. Extensive Arsenic Contamination in High-pH Unconfined Aquifers in the Indus Valley. Science Advances, 3(8): e1700935. https://doi.org/10.1126/sciadv.1700935
      Román⁃Ross, G., Cuello, G. J., Turrillas, X., et al., 2006. Arsenite Sorption and Co-Precipitation with Calcite. Chemical Geology, 233(3-4): 328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
      Schaefer, M. V., Guo, X. X., Gan, Y. Q., et al., 2017. Redox Controls on Arsenic Enrichment and Release from Aquifer Sediments in Central Yangtze River Basin. Geochimica et Cosmochimica Acta, 204: 104-119. https://doi.org/10.1016/j.gca.2017.01.035
      Senn, D. B., Hemond, H. F., 2002. Nitrate Controls on Iron and Arsenic in an Urban Lake. Science, 296(5577): 2373-2376. https://doi.org/10.1126/science.1072402
      Shaji, E., Santosh, M., Sarath, K. V., et al., 2021. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geoscience Frontiers, 12(3): 101079. https://doi.org/10.1016/j.gsf.2020.08.015
      Su, Y. P., Li, Q., Tao, H. F., et al., 2022. Factors Influencing the Abnormal Spatial Distribution of Arsenic Content in Groundwater in Kuitun River Basin. Journal of Yangtze River Scientific Research Institute, 39(2): 43-49, 55 (in Chinese with English abstract).
      Stolze, L., Zhang, D., Guo, H. M., et al., 2019. Surface Complexation Modeling of Arsenic Mobilization from Goethite: Interpretation of an In-Situ Experiment. Geochimica et Cosmochimica Acta, 248: 274-288. https://doi.org/10.1016/j.gca.2019.01.008
      Sø, H. U., Postma, D., Hoang, V. H., et al., 2018. Arsenite Adsorption Controlled by the Iron Oxide Content of Holocene Red River Aquifer Sediment. Geochimica et Cosmochimica Acta, 239: 61-73. https://doi.org/10.1016/j.gca.2018.07.026
      Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13(4): 288-295. https://doi.org/10.1038/s41561-020-0557-6
      Wang, C. H., 2005. Environmental Geology Atlas of Xinjiang Uygur Autonomous Region. Changji Xinjiang Gold Plate Printing Co. Ltd., Changji, 13 (in Chinese).
      Wang, J. J., Liang, X., Liu, Y. F., et al., 2019. Hydrogeochemical Evolution along Groundwater Flow Paths in the Manas River Basin, Northwest China. Ground Water, 57(4): 575-589. https://doi.org/10.1111/gwat.12829
      Wen, D. G., Zhang, F. C., Zhang, E. Y., et al., 2013. Arsenic, Fluoride and Iodine in Groundwater of China. Journal of Geochemical Exploration, 135: 1-21. https://doi.org/10.1016/j.gexplo.2013.10.012
      WHO (World Health Organization), 2011. Guidelines for Drinking-Water Quality. WHO, Geneva, 541.
      Yu, G. Q., Sun, D. J., Zheng, Y., 2007. Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. Environmental Health Perspectives, 115(4): 636-642. https://doi.org/10.1289/ehp.9268
      Zhang, H. Y., Zhang, X. J., Liu, W. B., et al., 2022. Impacts of Active Tectonics on Geogenic Arsenic Enrichment in Groundwater in the Hetao Plain, Inner Mongolia. Quaternary Science Reviews, 278: 107343. https://doi.org/10.1016/j.quascirev.2021.107343
      Zhang, J., Liang, X., Liu, Y. F., et al., 2022. The Collaborative Kriging Method Based on Principal Components to Predict the Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831 (in Chinese with English abstract).
      Zhang, R. Q., Liang, X., Jin, M. G., et al., 2018. Fundamentals of Hydrogeology. Geological Publishing House, Beijing, 57 (in Chinese).
      Zheng, M. L., Fan, X. D., He, W. J., et al., 2019. Superposition of Deep Geological Structural Evolution and Hydrocarbon Accumulation in the Junggar Basin. Earth Science Frontiers, 26(1): 22-32 (in Chinese with English abstract).
      Zhou, B. B., Guo, J., Chen, X. P., et al., 2021. Source Apportionment of Soil Heavy Metals in Abandoned Mining Areas in Dafan Mountain of Anhui Province Based on the UNMIX Model. Transactions of the Chinese Society of Agricultural Engineering, 37(24): 240-248 (in Chinese with English abstract).
      Zhou, Y. Z., 2018. Biogeochemical Processes in High Arsenic Groundwater in the Northwestern Hetao Basin, Inner Mongolia: Evidences from Hydrogeochemistry and Stable Isotopes (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhou, Y. Z., Zeng, Y. Y., Zhou, J. L., et al., 2017. Distribution of Groundwater Arsenic in Xinjiang, P. R. China. Applied Geochemistry, 77: 116-125. https://doi.org/10.1016/j.apgeochem.2016.09.005
      曹文庚, 杨会峰, 高媛媛, 等, 2020. 南水北调中线受水区保定平原地下水质量演变预测研究. 水利学报, 51(8): 924-935.
      曹永生, 郭华明, 倪萍, 等, 2017. 沉积物地球化学特征和土地利用方式对地下水砷行为的影响. 地学前缘, 24(2): 274-285.
      谌天德, 陈旭光, 王文科, 等, 2009. 准噶尔盆地地下水资源及其环境问题调查评价. 北京: 地质出版社, 47-64.
      邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      郭华明, 倪萍, 贾永锋, 等, 2014. 原生高砷地下水的类型、化学特征及成因. 地学前缘, 21(4): 1-12.
      洪里, 1983. 新疆奎屯北部车排子地区高氟、高砷水的病害与形成环境的初步研究. 新疆环境保护, 5(1): 22-28.
      侯珺, 2018. 石河子地区地下水水质演化与微量无机组分形成机理研究(博士学位论文). 乌鲁木齐: 新疆农业大学.
      况军, 2005. 准噶尔盆地古隆起与油气勘探方向. 新疆石油地质, 26(5): 502-509.
      雷米, 周金龙, 梁杏, 等, 2022. 新疆天山北麓中段孔隙水水化学特征及苏打水的成因. 地球科学, 47(2): 674-688. doi: 10.3799/dqkx.2021.027
      刘一博, 2018. 玛纳斯河流域绿洲区地表、地下水硝酸盐分布规律与源解析(硕士学位论文). 石河子: 石河子大学.
      牛树银, 孙爱群, 李红阳, 等, 2005. 张宣地区壳幔演化与生态效应. 地学前缘, 12(4): 597-606.
      宿彦鹏, 李巧, 陶洪飞, 等, 2022. 奎屯河流域高砷地下水砷含量空间分布异常的影响因素. 长江科学院院报, 39(2): 43-49, 55.
      王彩华, 2005. 新疆维吾尔自治区环境地质图集. 昌吉: 昌吉新疆金版印务有限公司, 13.
      张洁, 梁杏, 刘延锋, 等, 2022. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
      张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础. 北京: 地质出版社, 57.
      郑孟林, 樊向东, 何文军, 等, 2019. 准噶尔盆地深层地质结构叠加演变与油气赋存. 地学前缘, 26(1): 22-32.
      周蓓蓓, 郭江, 陈晓鹏, 等, 2021. 基于UNMIX模型的安徽大矾山废弃矿区土壤重金属源解析. 农业工程学报, 37(24): 240-248.
      周殷竹, 2018. 基于碳、铁稳定同位素的高砷地下水生物地球化学研究(博士学位论文). 北京: 中国地质大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(4)

      Article views (803) PDF downloads(92) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return