• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Rao Song, Huang Shunde, Hu Shengbiao, Gao Teng, 2023. Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis Mechanism of Global Hot Dry Rock System. Earth Science, 48(3): 857-877. doi: 10.3799/dqkx.2022.351
    Citation: Rao Song, Huang Shunde, Hu Shengbiao, Gao Teng, 2023. Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis Mechanism of Global Hot Dry Rock System. Earth Science, 48(3): 857-877. doi: 10.3799/dqkx.2022.351

    Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis Mechanism of Global Hot Dry Rock System

    doi: 10.3799/dqkx.2022.351
    • Received Date: 2022-04-24
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • Hot dry rock (HDR) is defined by the rock underground with high temperature but lack of fluid due to low porosity and permeability. The heat stored in HDR needs to be artificially fractured to form an enhanced geothermal system (EGS) to be exploited. The geothermal energy that can be exploited in HDR under the current technical and economic conditions is called HDR geothermal resources, which is regarded as one of the important alternative new energy sources for human beings in the future. The research on HDR began in the 1970s. After nearly 50 years of continuous development, great progress in both theory and practice has been made. Developed countries such as the United States, Japan, France, Germany, and Australia have successively invested heavily in HDR exploration, evaluation and development experiments. Moreover, some successful commercial development examples of HDR have been set up. The practices show that HDR geothermal resources are a part of deep geothermal energy, which means they often co-heat and are symbiotic with high temperature hydrothermal system. However, it is more difficult to exploit HDR than the hydrothermal system due to more complex geological conditions. Therefore, "deep geothermal energy" and "generalized EGS" concept should be advocated. According to EGS technology, we should focus on the overall development of deep hydrothermal and HDR geothermal energy. Moreover, it is developing from "rigid reservoir stimulation" to "soft reservoir stimulation" in order to overcome the environmental safety problems such as induced earthquakes. In recent years, China has carried out geological exploration on HDR in Qinghai, Tibet, Sichuan, Fujian, Guangdong, Hunan, Heilongjiang, Hainan and other areas with high heat flow. And then, preliminary drillings of HDR in Gonghe, Lijin, Huizhou, Kangding, Matouyin and northern Hainan have been implemented. Unfortunately, the breakthrough has only been made in the exploration and development experiments of HDR in Gonghe basin. Considering the distribution of global high-temperature geothermal zones, plate tectonic setting in Chinese continent, the current distribution pattern of terrestrial heat flow, lithospheric thermal structure, Moho depth and heat source in crust, Cenozoic volcanic activity, the distribution of hot springs, the distribution and active faults, and the existing HDR exploration results, the most promising HDR exploration target areas in Chinese continent are delineated, which include the Cenozoic volcanic activity area in Northeast China, Hainan Island-Leizhou Peninsula and the Yunnan-Tibet-Sichuan area (eastern Tibetan Plateau tectonic junction). In addition, medium and thick carbonate rocks with high thermal background should be the key target for deep geothermal energy exploitation.

       

    • loading
    • Aichholzer, C., Duringer, P., Orciani, S., et al., 2016. New Stratigraphic Interpretation of the Soultz-Sous-Forêts 30-Year-Old Geothermal Wells Calibrated on the Recent one from Rittershoffen (Upper Rhine Graben, France). Geothermal Energy, 4(1): 1-26. https://doi.org/10.1186/s40517-016-0055-7
      Aprea, C. M., Hildebrand, S., Fehler, M., et al., 2002. Three-Dimensional Kirchhoff Migration: Imaging of the Jemez Volcanic Field Using Teleseismic Data. Journal of Geophysical Research: Solid Earth, 107(B10): 2247-2258. https://doi.org/10.1029/2000jb000097
      Ayling, B. F., Hogarth, R. A., Rose, P. E., 2016. Tracer Testing at the Habanero EGS Site, Central Australia. Geothermics, 63: 15-26. https://doi.org/10.1016/j.geothermics.2015.03.008
      Beardsmore, G., 2004. The influence of basement on surface heat flow in the Cooper Basin. Exploration Geophysics, 35(4): 223-235. https://doi.org/10.1071/EG04223
      Breede, K., Dzebisashvili, K., Liu, X. L., et al., 2013. A Systematic Review of Enhanced (or Engineered) Geothermal Systems: Past, Present and Future. Geothermal Energy, 1(1): 1-27. https://doi.org/10.1186/2195-9706-1-4
      Brown, D. W., Duchane, D. V., Heiken, G., et al., 2012. The Future of Hot Dry Rock Geothermal Energy. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Springer, Berlin Heidelberg, 561-569. https://doi.org/10.1007/978-3-540-68910-2_10
      Buchmann, T. J., Connolly, P. T., 2007. Contemporary Kinematics of the Upper Rhine Graben: A 3D Finite Element Approach. Global and Planetary Change, 58(1-4): 287-309. https://doi.org/10.1016/j.gloplacha.2007.02.012
      Bai, D., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358-362. https://doi.org/10.1038/ngeo830
      Chen, Q. F., Ai, Y., Chen, Y. S., 2019. Overview of Deep Structures under the Changbaishan Volcanic Area in Northeast China. Science in China (Series D), 49(5): 778-795 (in Chinese with English abstract).
      Duan, H. X., Liu, Y. G., Wang, G. L., et al., 2023. Characteristics of the Terrestrial Heat Flow and Lithospheric Thermal Structure in Central Cangxian Uplift: A Case Study of Xianxian Geothermal Field. Earth Science, 48(3): 988-1001 (in Chinese with English abstract).
      Gan, H. N., Wang, G. L., Lin, W. J., et al., 2015. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China. Science & Technology Review, 33(19): 22-27 (in Chinese with English abstract).
      Gan, Q., Feng, Z., Zhou, L., et al., 2021. Down-Dip Circulation at the United Downs Deep Geothermal Power Project Maximizes Heat Recovery and Minimizes Seismicity. Geothermics, 96: 102204. https://doi.org/10.1016/j.geothermics.2021.102204
      Gao, J., Zhang, H. J., Zhang, S. Q., et al., 2018. Three-Dimensional Magnetotelluric Imaging of the Geothermal System beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76: 15-25. https://doi.org/10.1016/j.geothermics.2018.06.009
      Gao, W., Guo, Z. H., Zhou, J. X., et al., 2020. High Precision Aeromagnetic Characteristics and Curie Depth Analysis of the Hainan Island. Acta Geologica Sinica, 94(11): 3249-3262 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.11.006
      Garcia, J., Hartline, C., Walters, M., et al., 2016. The Northwest Geysers EGS Demonstration Project, California. Geothermics, 63: 97-119. https://doi.org/10.1016/j.geothermics.2015.08.003
      Genter, A., Evans, K., Cuenot, N., et al., 2010. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS). Comptes Rendus Geoscience, 342(7-8): 502-516. https://doi.org/10.1016/j.crte.2010.01.006
      Harlé, P., Kushnir, A. R. L., Aichholzer, C., et al., 2019. Heat Flow Density Estimates in the Upper Rhine Graben Using Laboratory Measurements of Thermal Conductivity on Sedimentary Rocks. Geothermal Energy, 7(1): 1-36. https://doi.org/10.1186/s40517-019-0154-3
      He, Z. L., Feng, J. Y., Zhang, Y., et al., 2017. A Tentative Discussion on an Evaluation System of Geothermal Unit Ranking and Classification in China. Earth Science Frontiers, 24(3): 168-179 (in Chinese with English abstract).
      Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.10.001
      Huang, H. B., Qiu, X. L., Xia, S. H., 2012. Crustal Structure and Poisson's Ratio Beneath Hainan Island. Journal of Tropical Oceanography, 31(3): 65-70 (in Chinese with English abstract).
      Jiang, G., Hu, S., Shi, Y., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006
      Kelkar, S., WoldeGabriel, G., Rehfeldt, K., 2016. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA. Geothermics, 63: 5-14. https://doi.org/10.1016/j.geothermics.2015.08.008
      Kennedy, B. M., Truesdell, A. H., 1996. The Northwest Geysers High-Temperature Reservoir: Evidence for Active Magmatic Degassing and Implications for the Origin of the Geysers Geothermal Field. Geothermics, 25(3): 365-387. https://doi.org/10.1016/0375-6505(96)00005-3
      Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract).
      Li, D. W., Wang, Y. X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11): 1858-1869 (in Chinese with English abstract).
      Lin, W. J., Wang, G. L., Shao, J. L., et al., 2021. Distribution and Exploration of Hot Dry Rock Resources in China: Progress and Inspiration. Acta Geologica Sinica, 95(5): 1366-1381 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.05.004
      Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47(10): 3723-3735 (in Chinese with English abstract).
      Llanos, E. M., Zarrouk, S. J., Hogarth, R. A., 2015. Numerical Model of the Habanero Geothermal Reservoir, Australia. Geothermics, 53: 308-319. https://doi.org/10.1016/j.geothermics.2014.07.008
      Lu, C., Wang, G. L., 2015. Current Status and Prospect of Hot Dry Rock Research. Science & Technology Review, 33(19): 13-21 (in Chinese with English abstract).
      Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097
      Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. https://doi.org/10.1029/2019gc008389
      Mao, X., Guo, D. B., Luo, L., et al., 2019. The Global Development Process of Hot Dry Rock (Enhanced Geothermal System) and Its Geological Background. Geological Review, 65(6): 1462-1472 (in Chinese with English abstract).
      Meixner, A. J., Kirkby, A. L., Horspool, N., 2014. Using Constrained Gravity Inversions to Identify High-Heat-Producing Granites Beneath Thick Sedimentary Cover in the Cooper Basin Region of Central Australia. Geothermics, 51: 483-495. https://doi.org/10.1016/j.geothermics.2013.10.010
      Mo, X. X., 2011. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2011.03.001
      Moore, J., McLennan, J., Allis, R., et al., 2019. The Utah Frontier Observatory for Research in Geothermal Energy (Forge): An International Laboratory for Enhanced Geothermal System Technology Development. 44th Workshop on Geothermal Reservoir Engineering 2019, Stanford.
      National Energy Administration, 2018. Terminology for Geothermal Energy. China Petrochemical Press, Beijing (in Chinese with English abstract).
      Olasolo, P., Juárez, M. C., Morales, M. P., et al., 2016. Enhanced Geothermal Systems (EGS): A Review. Renewable and Sustainable Energy Reviews, 56: 133-144. https://doi.org/10.1016/j.rser.2015.11.031
      Oppenheimer, D. H., Herkenhoff, K. E., 1981. Velocity-Density Properties of the Lithosphere from Three-Dimensional Modeling at the Geysers-Clear Lake Region, California. Journal of Geophysical Research: Solid Earth, 86(B7): 6057-6065. https://doi.org/10.1029/jb086ib07p06057
      Pang, Z. H., Kong, Y. L., Pang, J. M., et al., 2017. Geothermal Resources and Development in Xiongan New Area. Bulletin of Chinese Academy of Sciences, 32(11): 1224-1230 (in Chinese with English abstract).
      Pang, Z. H., Luo, J., Cheng, Y. Z., et al., 2020. Evaluation of Geological Conditions for the Development of Deep Geothermal Energy in China. Earth Science Frontiers, 27(1): 134-151 (in Chinese with English abstract).
      Parisio, F., Yoshioka, K., 2020. Modeling Fluid Reinjection into an Enhanced Geothermal System. Geophysical Research Letters, 47(19): e2020GL089886. https://doi.org/10.1029/2020gl089886
      Park, S., Kim, K. I., Xie, L., et al., 2020. Observations and Analyses of the First Two Hydraulic Stimulations in the Pohang Geothermal Development Site, South Korea. Geothermics, 88: 101905. https://doi.org/10.1016/j.geothermics.2020.101905
      Peacock, J. R., Earney, T. E., Mangan, M. T., et al., 2020. Geophysical Characterization of the Northwest Geysers Geothermal Field, California. Journal of Volcanology and Geothermal Research, 399: 106882. https://doi.org/10.1016/j.jvolgeores.2020.106882
      Pollett, A., Hasterok, D., Raimondo, T., et al., 2019. Heat Flow in Southern Australia and Connections with East Antarctica. Geochemistry, Geophysics, Geosystems, 20(11): 5352-5370. https://doi.org/10.1029/2019gc008418 doi: 10.1029/2019GC008418
      Rutqvist, J., Dobson, P. F., Garcia, J., et al., 2015. The Northwest Geysers EGS Demonstration Project, California: Pre-Stimulation Modeling and Interpretation of the Stimulation. Mathematical Geosciences, 47(1): 3-29. https://doi.org/10.1007/s11004-013-9493-y
      Sass, J. H., Morgan, P., 1988. Conductive Heat Flux in VC-1 and the Thermal Regime of Valles Caldera, Jemez Mountains, New Mexico. Journal of Geophysical Research, 93(B6): 6027. https://doi.org/10.1029/jb093ib06p06027
      Spell, T. L., Kyle, P. R., 1989. Petrogenesis of Valle Grande Member Rhyolites, Valles Caldera, New Mexico: Implications for Evolution of the Jemez Mountains Mgmatic System. Journal of Geophysical Research: Solid Earth, 94(B8): 10379-10396. https://doi.org/10.1029/jb094ib08p10379
      Steck, L. K., Thurber, C. H., Fehler, M. C., et al., 1998. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico: Results from the Jemez Teleseismic Tomography Experiment. Journal of Geophysical Research: Solid Earth, 103(B10): 24301-24320. https://doi.org/10.1029/98jb00750
      Tang, X. C., Liu, S. S., Zhang, D. L., et al., 2022. Geothermal Accumulation Constrained by the Tectonic Transformation in the Gonghe Basin, Northeastern Tibetan Plateau. Lithosphere, 2021(Special 5): 3936881. https://doi.org/10.2113/2022/3936881
      Tang, X. C., Wang, G. L., Ma, Y., et al., 2020. Geological Model of Heat Source and Accumulation for Geothermal Anomalies in the Gonghe Basin, Northeastern Tibetan Plateau. Acta Geologica Sinica, 94(7): 2052-2065 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.013
      Tang, X. C., Zhang, J., Pang Z. H., et al., 2017. The Eastern Tibetan Plateau Geothermal Belt, Western China: Geology, Geophysics, Genesis, and Hydrothermal System. Tectonophysics, 717: 433-448. https://doi.org/10.1016/j.tecto.2017.08.035
      Tian, J., Pang, Z., Liao, D., et al., 2021. Fluid Geochemistry and Its Implications on the Role of Deep Faults in the Genesis of High Temperature Systems in the Eastern Edge of the Qinghai Tibet Plateau. Applied Geochemistry, 131: 105036. https://doi.org/10.1016/j.apgeochem.2021.105036
      Vidal, J., Patrier, P., Genter, A., et al., 2018. Clay Minerals Related to the Circulation of Geothermal Fluids in Boreholes at Rittershoffen (Alsace, France). Journal of Volcanology and Geothermal Research, 349: 192-204. https://doi.org/10.1016/j.jvolgeores.2017.10.019
      Walters, M. A., Combs, J., 1989. Heat-Flow Regime in the Geysers-Clear Lake Area of Northern California, USA. 1989 Annual Meeting of the Geothermal Resources Council, Santa Rosa.
      Wang, J. Y., 2016. The Belt and Road Initiative, Geothermal First. Science & Technology Review, 34(21): 1 (in Chinese with English abstract).
      Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31 (in Chinese with English abstract).
      Wang, L. D., Wang, H., Zhang, M. D., et al., 2016. Possibility Analysis on the Occurrence of Geothermal Resources in Hot Dry Rock in Chenzhuang Area of Lijin County. Shandong Land and Resources, 32(1): 33-36 (in Chinese with English abstract).
      Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
      Weinert, S., Bär, K., Scheuvens, D., et al., 2021. Radiogenic Heat Production of Crystalline Rocks in the Gonghe Basin Complex (Northeastern Qinghai-Tibet Plateau, China). Environmental Earth Sciences, 80(7): 270. https://doi.org/10.1007/s12665-021-09558-x
      Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Progresses and Research Status of China. Acta Geologica Sinica, 92(9): 1936-1947 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.09.012
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica, 85(1): 1-33 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2011.00375.x
      Yan, Q., Shi, X., Metcalfe, I., et al., 2018. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Scientific Reports, 8(1): 2640-2454. https://doi.org/10.1038/s41598-018-20712-7
      Zhang, C., Hu, S. B., Song, R. C., et al., 2020. Genesis of the Hot Dry Rock Geothermal Resources in the Gonghe Basin: Constraints from the Radiogenic Heat Production Rate of Rocks. Chinese Journal of Geophysics, 63(7): 2697-2709 (in Chinese with English abstract).
      Zhang, C., Zhang, S. S., Li, S. T., et al., 2018. Geothermal Characteristics of the Qiabuqia Geothermal Area in the Gonghe Basin, Northeastern Tibetan Plateau. Chinese Journal of Geophysics, 61(11): 4545-4557 (in Chinese with English abstract).
      Zhang, J., Li, W. Y., Tang, X. C., et al., 2017. Geothermal Data Analysis at the High-Temperature Hydrothermal Area in Western Sichuan. Science in China (Series D), 47(8): 899-915 (in Chinese with English abstract).
      Zhang, S. Q., Wen, D. G., Xu, T. F., et al., 2019. The U. S. Frontier Observatory for Research in Geothermal Energy Project and Comparison of Typical EGS Site Exploration Status in China and U. S. Earth Science Frontiers, 26(2): 321-334 (in Chinese with English abstract).
      Zhang, S. Q., Yan, W. D., Li, D. P., et al., 2018. Characteristics of Geothermal Geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province. Geology in China, 45(6): 1087-1102 (in Chinese with English abstract).
      Zhang, S. S., Zhang, L., Tian, C. C., et al., 2019. Occurrence Geological Characteristics and Development Potential of Hot Dry Rocks in Qinghai Gonghe Basin. Journal of Geomechanics, 25(4): 501-508 (in Chinese with English abstract).
      Zheng, K. Y., Chen, Z. H., 2017. Hot Dry Rock Development in China: A Long Way to Go. Sino-Global Energy, 22(2): 21-25 (in Chinese with English abstract).
      Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science in China (Series D), 42(8): 1135-1159 (in Chinese with English abstract).
      陈棋福, 艾印双, 陈赟, 2019. 长白山火山区深部结构探测的研究进展与展望. 中国科学(D辑), 49(5): 778-795. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201905003.htm
      段和肖, 刘彦广, 王贵玲, 等, 2023. 沧县隆起中部大地热流及岩石圈热结构特征——以献县地热田为例. 地球科学, 48(3): 988-1001.
      甘浩男, 王贵玲, 蔺文静, 等, 2015. 中国干热岩资源主要赋存类型与成因模式. 科技导报, 33(19): 22-27. doi: 10.3981/j.issn.1000-7857.2015.19.002
      高维, 郭志宏, 周坚鑫, 等, 2020. 海南岛高精度航磁特征与居里等温面深度分析. 地质学报, 94(11): 3249-3262. doi: 10.3969/j.issn.0001-5717.2020.11.006
      何治亮, 冯建赟, 张英, 等, 2017. 试论中国地热单元分级分类评价体系. 地学前缘, 24(3): 168-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703019.htm
      侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815. doi: 10.3969/j.issn.0001-5717.2020.10.001
      黄海波, 丘学林, 夏少红, 2012. 海南岛地壳厚度与泊松比结构. 热带海洋学报, 31(3): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201203010.htm
      旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
      李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40(11): 1858-1869. doi: 10.3799/dqkx.2015.166
      蔺文静, 王贵玲, 邵景力, 等, 2021. 我国干热岩资源分布及勘探: 进展与启示. 地质学报, 95(5): 1366-1381. doi: 10.3969/j.issn.0001-5717.2021.05.004
      刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47(10): 3723-3735. doi: 10.3799/dqkx.2022.058
      陆川, 王贵玲, 2015. 干热岩研究现状与展望. 科技导报, 33(19): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201519010.htm
      毛翔, 国殿斌, 罗璐, 等, 2019. 世界干热岩地热资源开发进展与地质背景分析. 地质论评, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm
      莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103003.htm
      国家能源局, 2018. 地热能术语. 北京: 中国石化出版社.
      庞忠和, 孔彦龙, 庞菊梅, 等, 2017. 雄安新区地热资源与开发利用研究. 中国科学院院刊, 32(11): 1224-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201711009.htm
      庞忠和, 罗霁, 程远志, 等, 2020. 中国深层地热能开采的地质条件评价. 地学前缘, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm
      唐显春, 王贵玲, 马岩, 等, 2020. 青海共和盆地地热资源热源机制与聚热模式. 地质学报, 94(7): 2052-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007013.htm
      汪集旸, 2016. 一带一路, 地热先行. 科技导报, 34(21): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201621002.htm
      汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
      王立东, 王浩, 张明德, 等, 2016. 利津县陈庄地区干热岩地热资源存在可能性分析. 山东国土资源, 32(1): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201601010.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
      许天福, 胡子旭, 李胜涛, 等, 2018. 增强型地热系统: 国际研究进展与我国研究现状. 地质学报, 92(9): 1936-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201809012.htm
      许志琴, 杨经绥, 李海兵, 等, 2011. 印度‒亚洲碰撞大地构造. 地质学报, 85(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm
      张超, 胡圣标, 宋荣彩, 等, 2020. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束. 地球物理学报, 63(7): 2697-2709. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007019.htm
      张超, 张盛生, 李胜涛, 等, 2018. 共和盆地恰卜恰地热区现今地热特征. 地球物理学报, 61(11): 4545-4557. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201811019.htm
      张健, 李午阳, 唐显春, 等, 2017. 川西高温水热活动区的地热学分析. 中国科学(D辑), 47(8): 899-915. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708003.htm
      张森琦, 文冬光, 许天福, 等, 2019. 美国干热岩"地热能前沿瞭望台研究计划"与中美典型EGS场地勘查现状对比. 地学前缘, 26(2): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902030.htm
      张森琦, 严维德, 黎敦朋, 等, 2018. 青海省共和县恰卜恰干热岩体地热地质特征. 中国地质, 45(6): 1087-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806002.htm
      张盛生, 张磊, 田成成, 等, 2019. 青海共和盆地干热岩赋存地质特征及开发潜力. 地质力学学报, 25(4): 501-508. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904006.htm
      郑克棪, 陈梓慧, 2017. 中国干热岩开发: 任重而道远. 中外能源, 22(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201702004.htm
      朱日祥, 徐义刚, 朱光, 等, 2012. 华北克拉通破坏. 中国科学(D辑), 42(8): 1135-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (1530) PDF downloads(253) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return