• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 2
    Feb.  2023
    Turn off MathJax
    Article Contents
    Chen Yong, Han Yuhang, Lu Xuesong, Song Yifan, Ma Xingzhi, Fan Junjia, 2023. The Characteristics of Re⁃Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions. Earth Science, 48(2): 413-428. doi: 10.3799/dqkx.2022.353
    Citation: Chen Yong, Han Yuhang, Lu Xuesong, Song Yifan, Ma Xingzhi, Fan Junjia, 2023. The Characteristics of Re⁃Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions. Earth Science, 48(2): 413-428. doi: 10.3799/dqkx.2022.353

    The Characteristics of Re⁃Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions

    doi: 10.3799/dqkx.2022.353
    • Received Date: 2022-12-19
    • Publish Date: 2023-02-25
    • Complex geological evolution often leads to re⁃equilibration of fluid inclusions in deep carbonate reservoirs, and correctly identifying re⁃equilibration is of great significance to accurately explain paleo⁃fluid evolution.In this paper, taking the dolostone reservoir of Sinian Dengying Formation in Anyue gas field in Sichuan Basin, China as an example, the characteristics and types of re⁃equilibration are identified by petrography, Raman spectroscopy and micro⁃thermometry combined with the history of tectonic evolution, and original trapping conditions of each stage fluid inclusions are determined by PVT simulation based on the maxima or minima homogenization temperature of re⁃equilibrated fluid inclusions. The results show that fluid inclusions indolomi tes at stage Ⅱ, Ⅲ and Ⅳ are deformed by decrepitation, and fluid inclusions in calcite at stage Ⅴ are stretched, while re⁃equilibration characteristics of fluid inclusions in quartz at stage Ⅳ are not obvious. Re⁃equilibration of fluid inclusions in dolomites at stage Ⅱ and Ⅲ are in the process of burying and temperature increasing, while re⁃equilibration of fluid inclusions in dolomites at stage Ⅳ and in calcite at stage Ⅴ are in the process of uplift and temperature reducing.The trapping pressure and trapping temperature of fluid inclusions increase from stage Ⅱ to stage Ⅳ, reaching the peak of temperature and pressure at stage Ⅳ, while the trapping pressure and trapping temperature of fluid inclusions in calcite at stage Ⅴ are lower than those at stage Ⅳ. Combining trapping conditions and burial history can accurately determine the formation age of minerals at different diagenetic sequence, and the results can be compared with data from isotopic dating.

       

    • loading
    • Bakker, R. J., 1999. Adaptation of the Bowers and Helgeson (1983) Equation of State to the H2O-CO2-CH4-N2-NaCl System. Chemical Geology, 154(1): 225-236. https://doi.org/10.1016/S0009-2541(98)00133-8
      Bodnar, R. J., 1994. Synthetic Fluid Inclusions: Ⅻ. The System H2O-NaCl Experimental Determination of the Halite Liquidus and Isochores for a 40 wt% NaCl Solution. Geochimica et Cosmochimica Acta, 58(3): 1053-1063. https://doi.org/10.1016/0016-7037(94)90571-1
      Bodnar, R. J., Bethke, P. M., 1984. Systematics of Stretching of Fluid Inclusions I, Fluorite and Sphalerite at 1 Atmosphere Confining Pressure. Economic Geology, 79(1): 141-161. https://doi.org/10.2113/gsecongeo.79.1.141.
      Bodnar, R. J., Binns, P. R., Hall. D. L., 1989. Synthetic Fluid Inclusions‐Ⅵ. Quantitative Evaluation of the Decrepitation Behaviour of Fluid Inclusions in Quartz at One Atmosphere Confining Pressure. Journal of Metamorphic Geology, 7(2): 229-242. https://doi.org/10.1111/j.1525-1314.1989.tb00586.x
      Bourdet, J., Pironon, J., 2008. Strain Response and Re-equilibration of CH4-Rich Synthetic Aqueous Fluid Inclusions in Calcite during Pressure Drops. Geochimica et Cosmochimica Acta, 72(12): 2946-2959. https://doi.org/10.1016/j.gca.2008.04.012.
      Burruss, R. C., 1987. Diagenetic Palaeotemperatures from Aqueous Fluid Inclusions: Re-Equilibration of Inclusions in Carbonate Cements by Burial Heating. Mineralogical Magazine, 51(362): 477-481. https://doi.org/10.1180/minmag.1987.051.362.02.
      Cao, M. C., Chen, Y., Liu, C., et al., 2017. Mechanism and Identification of Fluid Inclusion Re-Equilibration in Diagenetic Environment of Sedimentary Basins. Geological Review, 63(1): 21-34(in Chinese with English abstract).
      Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953(in Chinese with English abstract).
      Doppler, G., Bakker, R. J., Baumgartner, M., 2013. Fluid Inclusion Modification by H2O and D2O Diffusion: the Influence of Inclusion Depth, Size, and Shape in Re-Equilibration Experiments. Contributions to Mineralogy & Petrology, 165(6): 1259-1274. https://doi.org/10.1007/s00410-013-0857-6
      Feng, M. Y., Qiang, Z. T., Shen, P., et al., 2016. Evidences for Hydrothermal Dolomite of Sinian Dengying Formation in Gaoshiti-Moxi Area, Sichuan Basin. Acta Petrolei Sinica, 37(5): 587-598(in Chinese with English abstract).
      Ferrero, S., Bodnar, R. J., Cesare, B., et al., 2011. Re-Equilibration of Primary Fluid Inclusions in Peritectic Garnet from Metapelitic Enclaves, El Hoyazo, Spain. Lithos, 124(1): 117-131. https://doi.org/10.1016/j.lithos.2010.09.004
      Goldstein, R. H., 1986. Reequilibration of Fluid Inclusions in Low-Temperature Calcium-Carbonate Cement. Geology, 14(9): 792-795. https://doi.org/10.1130/0091-7613(1986)14<792:rofiil>2.0.co;2 doi: 10.1130/0091-7613(1986)14<792:rofiil>2.0.co;2
      Goldstein, R. H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1): 159-193. https://doi.org/10.1016/S0024-4937(00)00044-X
      Hu, A. P., Shen, A. J., Chen, Y. N., et al., 2021. Reconstruction of Tectonic-Burial Evolution History of Sinian Dengying Formation in Sichuan Basin based on the Constraints of In-Situ Laser Ablation U-Pb Date and Clumped Isotopic Thermometer(Δ47). Petroleum Geology & Experiment, 43(5): 896-905+914(in Chinese with English abstract).
      Knight, C. L., Bodnar, R. J., 1989. Synthetic Fluid Inclusions: Ⅸ. Critical PVTX Properties of NaCl-H2O Solutions. Geochimica Et Cosmochimica Acta, 53(1): 3-8. https://doi.org/10.1016/0016-7037(89)90267-6
      Li, K. P., Chen, H. H., Feng, Y., 2012. Characteristics of Homogenization Temperatures of Fluid Inclusions and Application in Deeply Buried Carbonate Rocks. Natural Gas Geoscience, 23(4): 756-763(in Chinese with English abstract).
      Mei, Q. H., He, D. F., Wen, Z., et al., 2014. Geologic Structure and Tectonic Evolution of Leshan-Longnvsi Paleo-Uplift in Sichuan Baisn, China. Acta Petrolei Sinica, 35(1): 11-25(in Chinese with English abstract). doi: 10.1038/aps.2013.142
      Osborne, M., Haszeldine, S., 1993. Evidence for Resetting of Fluid Inclusion Temperatures from Quartz Cements in Oilfields. Marine and Petroleum Geology, 10(3): 271-278. https://doi.org/10.1016/0264-8172(95)91509-N
      Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, Washington.
      Shang, L. B., Chou, I. M., Burruss, R. C., et al., 2015. Raman Spectroscopic Characterization of CH4 Density over a Wide Range of Temperature and Pressure. Journal of Raman Spectroscopy, 45(8): 696-702. https://doi.org/10.1002/jrs.4529
      Shen, A. J., Zhao, W. Z., Hu, A. P., et al., 2021. The Dating and Temperature Measurement Technologies for Carbonate Minerals and their Application in Hydrocarbon Accumulation Research in the Paleo-Uplift in Central Sichuan Basin, SW China. Petroleum Exploration and Development, 48(3): 476-487(in Chinese with English abstract).
      Sterner, S. M., Bodnar, R. J., 2010. Synthetic Fluid Inclusions-Ⅶ. Re-Equilibration of Fluid Inclusions in Quartz during Laboratory-Simulated Metamorphic Burial and Uplift. Journal of Metamorphic Geology, 7(2): 243-260. https://doi.org/10.1111/j.1525-1314.1989.tb00587.x
      Sterner, S. M., Hall, D. L., Keppler, H., 1995. Compositional Re-Equilibration of Fluid Inclusions in Quartz. Contributions to Mineralogy and Petrology, 119(1): 1-15. https://doi.org/10.1007/BF00310713
      Sun, W., Liu. S. G., Song, J. M., et al., 2017. The Formation Process and Characteristics of Ancient and Deep Carbonate Petroleum Reservoirs in Superimposed Basins: a Case Study of Sinian (Ediacaran) Dengying Formation in the Sichuan Superimposed Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 44(3): 257-285(in Chinese with English abstract).
      Tao, S. Z., 2004. Premise Conditions and Key Problems of Applied Study of Inclusion in Oil-Gas Geology. Chinese Journal of Geology, 39(1): 77-91(in Chinese with English abstract).
      Tian, X. W., Peng, H. L., Wang, Y. L., et al., 2020. Analysis of Reservoir Difference and Controlling Factors between the Platform Margin and the Inner Area of the Fourth Member of Sinian Dengying Formation in Anyue Gas Field, Central Sichuan. Natural Gas Geoscience, 31(9): 1225-1238(in Chinese with English abstract).
      Ujiie, K., Yamaguchi, A., Taguchi, S., 2008. Stretching of Fluid Inclusions in Calcite as an Indicator of Frictional Heating on Faults. Geology, 36(2): 111-114. https://doi.org/10.1130/G24263A.1
      Vityk, M. O., Bodnar, R. J., 1995. Textural Evolution of Synthetic Fluid Inclusions in Quartz during Reequilibration, with Applications to Tectonic Reconstruction. Contributions to Mineralogy & Petrology, 121(3): 309-323. https://doi.org/10.1007/BF02688246
      Vityk, M. O., Bodnar, R. J., 1998. Statistical Microthermometry of Synthetic Fluid Inclusions in Quartz during Decompression Reequilibration. Contributions to Mineralogy & Petrology, 132(2): 149-162. https://doi.org/10.1007/s004100050413
      Vityk, M. O., Bodnar, R. J., Doukhan, J. C., 2000. Synthetic Fluid inclusions. XV. TEM Investigation of Plastic Flow Associated with Reequilibration of Fluid Inclusions in Natural Quartz. Contributions to Mineralogy & Petrology, 139(3): 285-297. https://doi.org/10.1007/s004100000142
      Wang, X. J., Yang, Z. R., Han, B., 2015. Superposed Evolution of Sichuan Basin and its Petroleum Accumulation. Earth Science Frontiers, 22(3): 161-173(in Chinese with English abstract).
      Wang, X. L., Hu, W. X., Qiu, Y., et al., 2022. Fluid Inclusion Evidence for Extreme Overpressure Induced by Gas Generation in Sedimentary Basins. Geology, 50(7): 765–770. https://doi.org/10.1130/G49848.1
      Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng‐Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531(in Chinese with English abstract).
      Yang, Y. M., Wen, L., Luo, B., et al., 2016. Hydrocarbon Accumulation of Sinian Natural Gas Reservoirs, Leshan-Longnvsi Paleohigh, Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 197-207(in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30023-4
      Yuan, H. F., Liu, Y., Xu, F. H., et al., 2014. The Fluid Charge and Hydrocarbon Accumulation, Sinian Reservoir, Anpingdian-Gaoshiti Structure, Central Sichuan Basin. Acta Petrologica Sinica, 30(3): 727-736(in Chinese with English abstract).
      Zeng, Y., Hou, Y. G., Hu, D. F., et al., 2022. Characteristics of Shale Fracture Veins and Paleo‐Pressure Evolution in Normal Pressure Shale Gas Zone, Southeast Margin of Sichuan Basin. Earth Science, 47(5): 1819-1833(in Chinese with English abstract).
      Zhang, X., Chen, K., Ma, B., et al., 2018. The Structural Evolution Characteristics of the Sinian Dengying Formation Gas Reservoir and its Controlling Mechanism in the Anyue Gas Field, Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 45(6): 698-708(in Chinese with English abstract).
      Zheng, Z. H., Li, D. H., Bai, S. S., et al., 2017. Resource Potentials of Natural Gas in Sichuan Basin. China Petroleum Exploration, 22(3): 12-20(in Chinese with English abstract).
      曹梦春, 陈勇, 刘闯, 等, 2017. 沉积盆地成岩环境下流体包裹体再平衡机制及其判别方法. 地质论评, 63(1): 21-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701004.htm
      池国祥, 卢焕章, 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945-1953. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809001.htm
      冯明友, 强子同, 沈平, 等, 2016. 四川盆地高石梯-磨溪地区震旦系灯影组热液白云岩证据. 石油学报, 37(5): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605003.htm
      胡安平, 沈安江, 陈亚娜, 等, 2021. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造-埋藏史重建. 石油实验地质, 43(5): 896-905+914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105020.htm
      李克蓬, 陈红汉, 丰勇, 2012. 深层碳酸盐岩流体包裹体均一温度特征及应用探讨. 天然气地球科学, 23(4): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204020.htm
      梅庆华, 何登发, 文竹, 等, 2014. 四川盆地乐山-龙女寺古隆起地质结构及构造演化. 石油学报, 35(1): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401002.htm
      沈安江, 赵文智, 胡安平, 等, 2021. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用. 石油勘探与开发, 48(3): 476-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103005.htm
      孙玮, 刘树根, 宋金民, 等, 2017. 叠合盆地古老深层碳酸盐岩油气成藏过程和特征——以四川叠合盆地震旦系灯影组为例. 成都理工大学学报(自然科学版), 44(3): 257-285. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201703001.htm
      陶士振, 2004. 包裹体应用于油气地质研究的前提条件和关键问题. 地质科学, 39(1): 77-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200401008.htm
      田兴旺, 彭瀚霖, 王云龙, 等, 2020. 川中安岳气田震旦系灯影组四段台缘-台内区储层差异及控制因素. 天然气地球科学, 31(9): 1225-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009004.htm
      王学军, 杨志如, 韩冰, 2015. 四川盆地叠合演化与油气聚集. 地学前缘, 22(3): 161-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503016.htm
      吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组-龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049
      杨跃明, 文龙, 罗冰, 等, 2016. 四川盆地乐山—龙女寺古隆起震旦系天然气成藏特征. 石油勘探与开发, 43(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602004.htm
      袁海锋, 刘勇, 徐昉昊, 等, 2014. 川中安平店-高石梯构造震旦系灯影组流体充注特征及油气成藏过程. 岩石学报, 30(3): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403012.htm
      曾宇, 侯宇光, 胡东风, 等, 2022. 川东南盆缘常压区页岩裂缝脉体特征及古压力演化. 地球科学, 47(5): 1819-1833. doi: 10.3799/dqkx.2022.011
      张旋, 陈康, 马波, 等, 2018. 川中安岳气田灯影组气藏构造演化特征及控藏机制. 成都理工大学学报(自然科学版), 45(6): 698-708. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201806006.htm
      郑志红, 李登华, 白森舒, 等, 2017. 四川盆地天然气资源潜力. 中国石油勘探, 22(3): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201703002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (991) PDF downloads(103) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return