• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 12
    Dec.  2022
    Turn off MathJax
    Article Contents
    Liu Handong, Zhao Yawen, Dong Jinyu, Yang Xinglong, Jing Mao, Li Pengju, Luo Jiaming, 2022. Seismic Dynamic Response and Failure Mode of Anti-Dip Rock Slope with Weak Rock Stratum. Earth Science, 47(12): 4373-4389. doi: 10.3799/dqkx.2022.355
    Citation: Liu Handong, Zhao Yawen, Dong Jinyu, Yang Xinglong, Jing Mao, Li Pengju, Luo Jiaming, 2022. Seismic Dynamic Response and Failure Mode of Anti-Dip Rock Slope with Weak Rock Stratum. Earth Science, 47(12): 4373-4389. doi: 10.3799/dqkx.2022.355

    Seismic Dynamic Response and Failure Mode of Anti-Dip Rock Slope with Weak Rock Stratum

    doi: 10.3799/dqkx.2022.355
    • Received Date: 2022-06-29
      Available Online: 2023-01-10
    • Publish Date: 2022-12-25
    • Taking the Hongshiyan collapse and landslide induced by Ludian earthquake as the research object, the dynamic response and failure instability mode of anti-dip rock slope with weak rock stratum are studied through large-scale shaking table model test and 3DEC numerical simulation. The results show that under horizontal loading, the PGA amplification coefficient first decreases and then increases with the increase of frequency, and the dynamic response of the slope is the most intense under the waveform loading close to the natural frequency of 8 Hz. The weak rock stratum can amplify and absorb transverse wave of different frequencies. It has obvious amplification effect on 5—10 Hz waves, obvious absorption on 15—20 Hz waves, and absorption on 25—30 Hz waves, but not obvious in 15—20 Hz frequency. Under vertical loading, with the increase of loading sine wave frequency, the PGA amplification factor first increases, decreases at 25 Hz, and then continues to increase. When the frequency is 30 Hz, the PGA amplification factor reaches the maximum. In the range of 5—30 Hz, the weak rock stratum has a certain amplification effect on the longitudinal wave. Under two direction loadings, the horizontal and vertical PGA amplification factor distributions of the slope are consistent with that under single direction loading. However, two direction loadings, the dynamic response at some positions of the slope is intensified, while the dynamic response at some positions is restrained. The failure process of anti-dip rock slope with weak rock stratum can be divided into six stages: slight damage inside the slope body-weak rock stratum extrusion and hard rock cracking above the boundary of soft and hard rock-hard rock crack extends upward-squeezing sliding of weak rock stratum-sliding surface formed by bedding plane and vertical joints-slope failure. In the anti-dip rock slope with weak rock stratum, the weak rock stratum has the amplification and absorption of seismic waves and the refraction and reflection effect, which affects the dynamic response characteristics of the slope. The extrusion failure of weak rock stratum leads to the disintegration and rupture of the structural plane of the upper rock mass, which is the main reason for the failure and development of the rock slope. For this kind of slope, attention should be paid to strengthening the weak rock stratum to reduce the dynamic damage of the slope.

       

    • loading
    • Chen, C., Hu, K.H., 2017. Comparison of Distribution of Landslides Triggered by Wenchuan, Lushan, and Ludian Earthquakes. Journal of Engineering Geology, 25(3): 806-814(in Chinese with English abstract).
      Dong, J.Y., Wang, D., Yang, J.H., et al., 2013. Analysis of Formation Mechanism and Three-Dimensional Stability of Large Scale Terrace of Earthquake Landslide. Rock and Soil Mechanics, 34(Suppl. 1): 252-258(in Chinese with English abstract).
      Dong, J.Y., Yang, G.X., Yang, J.H., et al., 2011a. Analysis of Causes and Typical Examples of the Landslide in Wenchuan Earthquake Disaster Area. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 32(5): 10-13(in Chinese with English abstract).
      Dong, J.Y., Yang, G.X., Wu, F.Q., et al., 2011b. The Large-Scale Shaking Table Test Study of Dynamic Response and Failure Mode of Bedding Rock Slope under Earthquake. Rock and Soil Mechanics, 32(10): 2977-2982, 2988(in Chinese with English abstract).
      Guo, J., Wei, X.J., Wang, G., 2015. Study on the Basic Characteristics and Formation Mechanism of Lushan Liushuigou Landslide. Highway Engineering, 40(2): 15-19, 33(in Chinese with English abstract).
      He, J.X., Qi, S.W., Zhan, Z.F., et al., 2021. Seismic Response Characteristics and Deformation Evolution of the Bedding Rock Slope Using a Large-Scale Shaking Table. Landslides, 18: 2835-2853. https://doi.org/10.1007/s10346-021-01682-w
      Huang, R.Q., Li, G., Ju, N.P., 2013. Shaking Table Test on Strong Earthquake Response of Stratified Rock Slopes. Chinese Journal of Rock Mechanics and Engineering, 32(5): 865-875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.05.003
      Huang, R.Q., Li, W.L., 2008. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.028
      Huang, R.Q., Zhao, J.J., Ju, N.P., et al., 2013. Analysis of an Anti-Dip Landslide Triggered by the 2008 Wenchuan Earthquake in China. Natural Hazards, 68(2): 1021-1039. https://doi.org/10.1007/s11069-013-0671-5
      Keefer, D.K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406. https://doi.org/10.1130/0016-7606(1984)95406:lcbe>2.0.co;2 doi: 10.1130/0016-7606(1984)95406:lcbe>2.0.co;2
      Keefer, D.K., 1994. The Importance of Earthquake-Induced Landslides to Long-Term Slope Erosion and Slope-Failure Hazards in Seismically Active Regions. Geomorphology and Natural Hazards. Elsevier, Amsterdam, 265-284. https://doi.org/10.1016/b978-0-444-82012-9.50022-0
      Khazai, B., Sitar, N., 2004. Evaluation of Factors Controlling Earthquake-Induced Landslides Caused by Chi-Chi Earthquake and Comparison with the Northridge and Loma Prieta Events. Engineering Geology, 71(1-2): 79-95. https://doi.org/10.1016/s0013-7952(03)00127-3
      Li, G., Huang, R.Q., Ju, N.P., et al., 2011. Cause Mechanism of Giant Anti-Incline Ganhekou Landslide Induced by Wenchuan Earthquake. Water Resources and Power, 29(4): 118-121(in Chinese with English abstract).
      Li, H.B., Li, X.W., Ning, Y., et al., 2019. Dynamical Process of the Hongshiyan Landslide Induced by the 2014 Ludian Earthquake and Stability Evaluation of the Back Scarp of the Remnant Slope. Bulletin of Engineering Geology and the Environment, 78(3): 2081-2092. https://doi.org/10.1007/s10064-018-1233-6
      Li, W.B., Fan, X.M., Huang, F.M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795(in Chinese with English abstract).
      Liu, H.D., Niu, L.F., Wang, Z.F., et al., 2018. Influence of Vibration Intensity on Dynamic Response of Rock Slope. Journal of Disaster Prevention and Mitigation Engineering, 38(4): 677-683(in Chinese with English abstract).
      Liu, H.D., Zhao, Y.W., Dong, J.Y., et al., 2021. Experimental Study of the Dynamic Response and Failure Mode of Anti-Dip Rock Slopes. Bulletin of Engineering Geology and the Environment, 80(8): 6583-6596. https://doi.org/10.1007/s10064-021-02313-3
      Luo, J., 2020. Slope Dynamic Response and Formation Mechanism of Large-Scale Rockslide Dam in the "8·3" Ludian Earthquake (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Luo, L.G., Pei, X.J., Huang, R.Q., 2020. Earthquake-Triggered Landslide Occurrence Probability in Strong Seismically Mountainous Areas: A Case Study of Jiuzhaigou National Geopark. Chinese Journal of Rock Mechanics and Engineering, 39(10): 2079-2093(in Chinese with English abstract).
      Meunier, P., Hovius, N., Haines, J.A., 2008. Topographic Site Effects and the Location of Earthquake Induced Landslides. Earth and Planetary Science Letters, 275(3-4): 221-232. https://doi.org/10.1016/j.epsl.2008.07.020
      Qi, S.W., 2006. Two Patterns of Dynamic Responses of Single-Free-Surface Slopes and Their Threshold Height. Chinese Journal of Geophysics, 49(2): 518-523(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2006.02.026
      Qi, S.W., Wu, F.Q., Liu, C.L., et al., 2004. Engineering Geology Analysis on Stability of Slope under Earthauake. Chinese Journal of Rock Mechanics and Engineering, 23(16): 2792-2797(in Chinese with English abstract).
      Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330(in Chinese with English abstract).
      Xu, C., Dai, F.C., Xu, X.W., 2010. Wenchuan Earthquake-Induced Landslides: An Overview. Geological Review, 56(6): 860-874(in Chinese with English abstract).
      Xu, W.J., Chen, Z.Y., He, B.S., et al., 2010. Research on River-Blocking Mechanism of Xiaojiaqiao Landslide and Disasters of Chain Effects. Chinese Journal of Rock Mechanics and Engineering, 29(5): 933-942(in Chinese with English abstract).
      Yang, G.X., Wu, F.Q., Dong, J.Y., et al., 2012. Study of Dynamic Response Characters and Failure Mechanism of Rock Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(4): 696-702(in Chinese with English abstract).
      Yao, X., Xu, C., Dai, F.C., et al., 2009. Contribution of Strata Lithology and Slope Gradient to Landslides Triggered by Wenchuan Ms8 Earthquake, Sichuan, China. Geological Bulletin of China, 28(8): 1156-1162(in Chinese with English abstract).
      Yin, Y.P., Wang, W.P., Li, B., et al., 2016. Study of Stratigraphic Site Effect on the Failure Mechanism of Donghekou Rockslide Triggered by Wenchuan Earthquake. China Civil Engineering Journal, 49(Suppl. 2): 126-131(in Chinese with English abstract).
      Yin, Z.Q., Xu, Y.Q., Chen, H.Q., et al., 2016. The Development and Distribution Characteristics of Geohazards Induced by August 3, 2014 Ludian Earthquake and Comparison with Jinggu and Yingjiang Earthquakes. Acta Geologica Sinica, 90(6): 1086-1097(in Chinese with English abstract).
      Zhan, Z.F., Qi, S.W., He, N.W., et al., 2019. Shaking Table Test Study of Homogeneous Rock Slope Model under Strong Earthquake. Journal of Engineering Geology, 27(5): 946-954(in Chinese with English abstract).
      Zhang, Q.K., Ling, S.X., Li, X.N., et al., 2020. Comparison of Landslide Susceptibility Mapping Rapid Assessment Models in Jiuzhaigou County, Sichuan Province, China. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1595-1610(in Chinese with English abstract).
      陈成, 胡凯衡, 2017. 汶川、芦山和鲁甸地震滑坡分布规律对比研究. 工程地质学报, 25(3): 806-814. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703028.htm
      董金玉, 王东, 杨继红, 等, 2013. 大型阶地型地震滑坡的成因机制和三维稳定性分析. 岩土力学, 34(增刊1): 252-258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1039.htm
      董金玉, 杨国香, 杨继红, 等, 2011a. 汶川地震灾区滑坡的成因及典型实例分析. 华北水利水电学院学报, 32(5): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201105002.htm
      董金玉, 杨国香, 伍法权, 等, 2011b. 地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究. 岩土力学, 32(10): 2977-2982, 2988. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110015.htm
      郭剑, 魏小佳, 王刚, 2015. 芦山灾区流水沟滑坡基本特征及成因机制研究. 公路工程, 40(2): 15-19, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201502004.htm
      黄润秋, 李果, 巨能攀, 2013. 层状岩体斜坡强震动力响应的振动台试验. 岩石力学与工程学报, 32(5): 865-875. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305003.htm
      黄润秋, 李为乐, 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究. 岩石力学与工程学报, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm
      李果, 黄润秋, 巨能攀, 等, 2011. 汶川地震诱发干河口巨型反倾滑坡成因机制研究. 水电能源科学, 29(4): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201104038.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      刘汉东, 牛林峰, 王忠福, 等, 2018. 震动强度对反倾层状岩质边坡动力响应规律的影响. 防灾减灾工程学报, 38(4): 677-683. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201804012.htm
      罗璟, 2020. "8·3"鲁甸地震斜坡动力响应及巨型岩质滑坡堵江机制研究(博士论文). 成都: 成都理工大学.
      罗路广, 裴向军, 黄润秋, 2020. 强震山区地震滑坡发生概率研究: 以九寨沟国家地质公园为例. 岩石力学与工程学报, 39(10): 2079-2093. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010012.htm
      祁生文, 2006. 单面边坡的两种动力反应形式及其临界高度. 地球物理学报, 49(2): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200602025.htm
      祁生文, 伍法权, 刘春玲, 等, 2004. 地震边坡稳定性的工程地质分析. 岩石力学与工程学报, 23(16): 2792-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200416024.htm
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      许冲, 戴福初, 徐锡伟, 2010. 汶川地震滑坡灾害研究综述. 地质论评, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
      徐文杰, 陈祖煜, 何秉顺, 等, 2010. 肖家桥滑坡堵江机制及灾害链效应研究. 岩石力学与工程学报, 29(5): 933-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005012.htm
      杨国香, 伍法权, 董金玉, 等, 2012. 地震作用下岩质边坡动力响应特性及变形破坏机制研究. 岩石力学与工程学报, 31(4): 696-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204008.htm
      姚鑫, 许冲, 戴福初, 等, 2009. 四川汶川Ms8级地震引发的滑坡与地层岩性、坡度的相关性. 地质通报, 28(8): 1156-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200908020.htm
      殷跃平, 王文沛, 李滨, 等, 2016. 地层场地效应对东河口地震滑坡发生影响研究. 土木工程学报, 49(增刊2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2022.htm
      殷志强, 徐永强, 陈红旗, 等, 2016.2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究. 地质学报, 90(6): 1086-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201606004.htm
      詹志发, 祁生文, 何乃武, 等, 2019. 强震作用下均质岩质边坡动力响应的振动台模型试验研究. 工程地质学报, 27(5): 946-954. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905002.htm
      张玘恺, 凌斯祥, 李晓宁, 等, 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究. 岩石力学与工程学报, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(5)

      Article views (826) PDF downloads(76) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return