• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 4
    Apr.  2023
    Turn off MathJax
    Article Contents
    Tian Tengzhen, Li Zeqi, Lu Pengda, Zhang Hang, Wu Juan, Sun Wei, Liu Shugen, He Ruowei, Zhang Jiewei, Deng Bin, 2023. Genetic Mechanism and Significance of Oncoidal Dolostone in Sinian Dengying Formation: A Case Study of Liuwan Section. Earth Science, 48(4): 1568-1586. doi: 10.3799/dqkx.2022.358
    Citation: Tian Tengzhen, Li Zeqi, Lu Pengda, Zhang Hang, Wu Juan, Sun Wei, Liu Shugen, He Ruowei, Zhang Jiewei, Deng Bin, 2023. Genetic Mechanism and Significance of Oncoidal Dolostone in Sinian Dengying Formation: A Case Study of Liuwan Section. Earth Science, 48(4): 1568-1586. doi: 10.3799/dqkx.2022.358

    Genetic Mechanism and Significance of Oncoidal Dolostone in Sinian Dengying Formation: A Case Study of Liuwan Section

    doi: 10.3799/dqkx.2022.358
    • Received Date: 2022-03-05
    • Publish Date: 2023-04-25
    • As a typical Precambrian microbial carbonate rock, the Sinian Dengying Formation oncoidal dolostone is one of the rock types of ancient deep oil and gas exploration in China. The study on the genetic model of oncoids has important guiding significance for the restoration of paleoenvironment, the study of paleo-water and its reservoir-forming model. In this paper, the oncoid of Dengying Formation is divided into six types based on its structural characteristics and genetic mechanism. Combined with petrology, sedimentology, geochemistry and other research methods, a comprehensive study of the distribution characteristics and depositional process of oncoids in the northern margin of the Sichuan basin has been carried out . The results show that the second member of Dengying Formation sedimented in the environment of subtidal flat and intertidal flat. The differences of hydrodynamic and microbial conditions affect the four kinds of formation mechanisms of oncoidal laminations: microbial growth, microbial calcification, bonding and capturing of microbial biofilm, and chemical precipitation. On the other hand, hydrodynamic conditions control the development thickness of laminations, morphological characteristics and associated rock types of the oncoids. The microbial activity habits affects the differentiation characteristics of the main trace and rare earth elements of the oncoids. The Fe/Mn ratio of the pooralgae lamina is higher than that of the rich algae lamina; the Cu/Zn ratio of the solid algae is higher than that of the non-solid algae; and the enrichment of rare earth elements in the lamina is generally lower than that the oncoidal nuclei. In summary, there are four formation mechanisms for oncoids in the second member of Dengying Formation, and they are jointly controlled by microbial and hydrodynamic conditions under sea level change.

       

    • loading
    • Adachi, M., Yamamoto, K., Suigiski, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. https://doi.org/10.1016/0037-0738(86)90075-8
      Aitken, J. D., 1967. Classification and Environmental Significance of Cryptalgal Limestones and Dolomites, with Illustrations from the Cambrian and Ordovician of SouthWestern Alberta. SEPM Journal of Sedimentary Research, 37(4): 1163-1178. https://doi.org/10.1306/74d7185c-2b21-11d7-8648000102c1865d
      Bai, Y., Luo, P., Liu, W., et al., 2019. Characteristics and Origin of Oncolite from Changping Formation in the Series 2 of Cambrian in Western Beijing. Geoscience, 33(3): 587-597(in Chinese with English abstract).
      Bian, L. Z., Huang, Z. C., 1988. On Classification and Paleoecological Significance of Oncolite and Features of Non-skeletal Oncolite in Ordovician, Anhui, China. Acta Palaeontologica Sinica, 27(5): 544-552, 666(in Chinese with English abstract).
      Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016-7037(92)90064-p
      Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2020. Paired δ13Ccarb13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle. Journal of Earth Science, 31(2): 342-353. https://doi.org/10.1007/s12583-018-0886-1
      Du, R. L., 1992. Precambrian Paleontology and Geoscience. Geological Publishing House, Beijing(in Chinese).
      Flügel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Science & Business Media, Berlin, 289-563.
      Glass, S. W., Wilkinson, B. H., 1980. The Peterson Limestone—Early Cretaceous Lacustrine Carbonate Deposition in Western Wyoming and Southeastern Idaho. Sedimentary Geology, 27(2): 143-160. https://doi.org/10.1016/0037-0738(80)90034-2
      He, Z. A., 1982. Classification and Origin of Oncolite. Oil & Gas Geology, 3(1): 41-48, 99 (in Chinese with English abstract).
      Heim, A., 1916. Monographie der Churfrsten Mattstock Gruppe (3 Teil). Lithogenesis Beitr Geol Karte, Schweiz NF 20, 369-537.
      Huang, Y. R., 2019. Study of Mineralization Mechanism of Carbonates and Sulfates Mediated by Marine Microbes(Dissertation). University of Science and Technology of China, Hefei, 3-13(in Chinese with English abstract).
      Jiang, M., Hu, X. W., Li, S., et al., 2014. Influence of Pb2+ on the Extracellular Polymeric Substances(EPS) of Bio-Membranes. Journal of Safety and Environment, 14(4): 237-241 (in Chinese with English abstract).
      Kapila, D., 1977. Classification of Oncoids from the Upper Jurassic Carbonates of the French Jura. Sedimentary Geology, 18(4): 337-353. https://doi.org/10.1016/0037-0738(77)90058-6
      Li, S., 2014. The Interaction Influence between Biofilm and Its Extracellular Polymers by Cu2+(Dissertation). Kunming University of Science and Technology, Kunming, 29-58(in Chinese with English abstract).
      Li, W., Liu, J. J., Deng, S. H., et al., 2015. The Nature and Role of Late Sinian-Early Cambrian Tectonic Movement in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 36(5): 546-556, 563 (in Chinese with English abstract).
      Li, X. Z., Guan, S. R., Xie, Q. B., et al., 2000. The Oncoids Genesis in the Middle Member of the Guanzhuang Formation of Eocene in Pingyi Basin. Acta Petrologica Sinica, 16(2): 261-268 (in Chinese with English abstract).
      Li, Y. F., Li, F., 2022. How did Reefs Evolve During the Precambrian-Cambrian Transition? Earth Science, 47(10): 3853-3855(in Chinese with English abstract).
      Liang, T. Y., Liu, J. D., Li, M. M., et al., 2021. Discovery of Oncolitic in the Upper Permian Linxi Formation in Central Great Xing'an Mountains and Its Geological Significances. Geological Review, 67(3): 593-611 (in Chinese with English abstract).
      Liu, J. J., Li, W., Zhang, B. M., et al., 2015. Sedimentary Palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography, 17(6): 735-753 (in Chinese with English abstract).
      Logan, B. W., Rezak, R., Ginsburg, R. N., 1964. Classification and Environmental Significance of Algal Stromatolites. The Journal of Geology, 72(1): 68-83. https://doi.org/10.1086/626965
      Mei, M. X., 2007. Revised Classification of Microbial Carbonates: Complementing the Classification of Limestones. Earth Science Frontiers, 14(5): 222-234 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60044-X
      Riding, R., 2000. Microbial Carbonates: The Geological Record of Calcified Bacterial-Algal Mats and Biofilms. Sedimentology, 47(Suppl. 1): 179-214. https://doi.org/10.1046/j.1365-3091.2000.00003.x
      Sverjensky, D. A., 1984. Prediction of Gibbs Free Energies of Calcite-Type Carbonates and the Equilibrium Distribution of Trace Elements between Carbonates and Aqueous Solutions. Geochimica et Cosmochimica Acta, 48(5): 1127-1134. https://doi.org/10.1016/0016-7037(84)90203-5
      Tang, X., Liu, S. G., Song, J. M., et al., 2018. Characteristics and Environmental Significance of the Sinian Dengying Formation Oncoids in the Northeastern Sichuan Basin. Acta Sedimentologica Sinica, 36(2): 232-242(in Chinese with English abstract).
      Wang, W. Z., Wen, L., Yao, J., et al., 2019. Sequence Classification and Discovery of Multi-Stage Platform Margin Belts of Sinian Dengying Formation, Sichuan Basin. Natural Gas Exploration and Development, 42(4): 46-54(in Chinese with English abstract).
      Wolf, K. H., 1965. Petrogenesis and Palaeoenvironment of Devonian Algal Limestones of New South Wales. Sedimentology, 4(1-2): 113-178. https://doi.org/10.1111/j.1365-3091.1965.tb01285.x
      Xu, Y. T., 1997. Genetic Geochemistry for the Bedded Silicalite in the Late Permian Dalong Formation and Its Sedimehtary Setting in Southeastern Hubei. Journal of Guilin Institute of Technology, 17(3): 204-212(in Chinese with English abstract).
      Xu, Z. H., Lan, C. J., Ma, X. L., et al., 2020. Sedimentary Models and Physical Properties of Mound-Shoal Complex Reservoirs in Sinian Dengying Formation, Sichuan Basin. Earth Science, 45(4): 1281-1294(in Chinese with English abstract).
      Yang, R. C., Fan, A. P., Han, Z. Z., et al., 2011. Status and Prospect of Studies on Oncoid. Advances in Earth Science, 26(5): 465-474(in Chinese with English abstract).
      Yang, R. Q., Yang, F. L., Zhou, X. F., et al., 2019. Paleogeographic Evolution of the Dengying Formation in Hannan-Northeastern Sichuan Basin: Sedimentary Evidence of the Extensional Tectonic Setting for the Northwest Margin of the Yangtze Block in the Late Sinian. Acta Sedimentologica Sinica, 37(1): 189-199(in Chinese with English abstract).
      Zhang, Q. H., Su, J. H., Wan, L., et al., 2021. Analysis of Origin and Existing Problems of Siliceous Minerals in Marine Carbonate Rocks in Sichuan Basin. Advances in Geosciences, 11 (6): 869-878(in Chinese with English abstract). doi: 10.12677/AG.2021.116081
      Zhang, X. Y., 2016. The Calcification of Cyanobacteria from Microbial Carbonates in the Cambrian, Western Henan (Dissertation). Henan Polytechnic University, Jiaozuo, 51-71(in Chinese with English abstract).
      Zhang, Y. F., Tang, Y., Tang, H. M., et al., 2022. Fabric Characteristics of Oncoids from Yangba Section, Ediacaran Dengying Formation, Northwestern Sichuan. Acta Sedimentologica Sinica, 40(5): 1302-1312(in Chinese with English abstract).
      白莹, 罗平, 刘伟, 等, 2019. 北京西郊丁家滩剖面寒武系第二统昌平组核形石特征及成因. 现代地质, 33(3): 587-597. doi: 10.19657/j.geoscience.1000-8527.2019.03.11
      边立曾, 黄志诚, 1988. 核形石的分类及生态研究. 古生物学报, 27(5): 544-552, 666. doi: 10.19800/j.cnki.aps.1988.05.003
      杜汝霖, 1992. 前寒武纪古生物学及地史学. 北京: 地质出版社.
      贺自爱, 1982. 藻灰结核分类及其成因. 石油与天然气地质, 3(1): 41-48, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198201005.htm
      黄亚蓉, 2019. 海洋微生物调控的碳酸盐和硫酸盐的矿化机制研究(博士学位论文). 合肥: 中国科学技术大学, 3-13.
      江孟, 胡学伟, 李姝, 等, 2014. Pb2+对生物膜胞外聚合物(EPS)的影响研究. 安全与环境学报, 14(4): 237-241. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201404051.htm
      李姝, 2014. Cu2+对生物膜及其胞外多聚物的作用规律研究(硕士学位论文). 昆明: 昆明理工大学, 29-58.
      李伟, 刘静江, 邓胜徽, 等, 2015. 四川盆地及邻区震旦纪末-寒武纪早期构造运动性质与作用. 石油学报, 36(5): 546-556, 563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htm
      李熙哲, 管守锐, 谢庆宾, 等, 2000. 平邑盆地下第三系官中段核形石成因分析. 岩石学报, 16(2): 261-268. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002015.htm
      李杨凡, 李飞, 2022. 前寒武-寒武纪重大转折期生物礁是如何演化的? 地球科学, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838
      梁天意, 刘敬党, 李猛猛, 等, 2021. 大兴安岭中段上二叠统林西组核形石的发现及其地质意义. 地质论评, 67(3): 593-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202103003.htm
      刘静江, 李伟, 张宝民, 等, 2015. 上扬子地区震旦纪沉积古地理. 古地理学报, 17(6): 735-753. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201506002.htm
      梅冥相, 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200705024.htm
      唐玄, 刘树根, 宋金民, 等, 2018. 四川盆地东北缘灯影组核形石特征及环境意义. 沉积学报, 36(2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201802002.htm
      王文之, 文龙, 姚军, 等, 2019. 四川盆地震旦系灯影组层序划分及多期台缘带的发现. 天然气勘探与开发, 42(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201904010.htm
      徐跃通, 1997. 鄂东南晚二叠世大隆组层状硅质岩成因地球化学及沉积环境. 桂林工学院学报, 17(3): 204-212. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX703.001.htm
      徐哲航, 兰才俊, 马肖琳, 等, 2020. 四川盆地震旦系灯影组丘滩体储层沉积模式与物性特征. 地球科学, 45(4): 1281-1294. doi: 10.3799/dqkx.2019.138
      杨仁超, 樊爱萍, 韩作振, 等, 2011. 核形石研究现状与展望. 地球科学进展, 26(5): 465-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201105001.htm
      杨瑞青, 杨风丽, 周晓峰, 等, 2019. 汉南—川东北灯影组古地理演化: 晚震旦世扬子西北缘拉张背景的沉积学证据. 沉积学报, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htm
      张倩慧, 苏进红, 万漓, 等, 2021. 四川盆地海相碳酸盐岩中硅质含有物成因及存在问题分析. 地球科学前沿, (6): 869-878.
      张喜洋, 2016. 豫西寒武纪微生物碳酸盐岩中蓝细菌的钙化作用(硕士学位论文). 焦作: 河南理工大学, 51-71.
      张云峰, 唐雨, 唐洪明, 等, 2022. 川西北杨坝剖面埃迪卡拉系灯影组核形石组构特征. 沉积学报, 40(5): 1302-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202205010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (1112) PDF downloads(110) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return