Citation: | Lü Tao, Jiang Kang, Wang Junpeng, Jiao Yunzhe, Zhai Lei, 2025. 39Ar-40Ar Geochronology and EBSD Analysis of Mylonite in Zanhuang Massif: Implications for Paleoproterozoic Tectono-Thermal Evolution of North China Craton. Earth Science, 50(4): 1273-1283. doi: 10.3799/dqkx.2022.359 |
Hebei Bureau of Geology and Mineral Resources, 1989. Regional Geology of Hebei, Beijing and Tianjin. Geological Publishing House, Beijing(in Chinese).
|
Hou, G. T., Li, J. H., Liu, Y. L., et al., 2005. Extensional Events at the End of Paleoproterozoic in North China Craton: Aola Valley and Dike Swarms. Progress in Natural Science, 15(11): 1366-1373(in Chinese with English abstract).
|
Jiang, K., Wang, J. P., Kusky, T., et al., 2020. Neoarchean Seafloor Hydrothermal Metamorphism of Basalts in the Zanhuang Ophiolitic Mélange, North China Craton. Precambrian Research, 347: 105832. https://doi.org/10.1016/j.precamres.2020.105832
|
Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004
|
Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367-9120(03)00071-3
|
Kusky, T. M., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4-28. https://doi.org/10.1016/j.gr.2006.11.012
|
Lei, S. H., Hu, S. J., Zhao, Z. Y., et al., 1994. Models for Fuping-Zanhuang Metamorphic Bicore Complexes Structure, Hebei, China. Journal of Hebei GEO University, 17(1): 54-64(in Chinese with English abstract).
|
Li, J. H., Hou, G. T., Huang, X. N., et al., 2001. The Constraint for the Supercontinental Cycles: Evidence from Precambrian Geology of North China Block. Acta Petrologica Sinica, 17(2): 177-186(in Chinese with English abstract).
|
Liu, S. W., Li, J. H., Pan, Y. M., et al., 2002. The Archean Blocks in the Taihang and Hengshan Regions: Geochronological and Geochemical Constraints. Progress in Natural Science, 12(8): 826-833.
|
Ma, X. Y., Wu, Z. W., Tan, Y. J., et al., 1979. Tectonics of the North China Platform Basement. Acta Geologica Sinica, 53(4): 293-304(in Chinese with English abstract).
|
Ning, W. B., Wang, J. P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952-963. https://doi.org/10.1007/s12583-019-1020-8
|
Shi, W. B., Wang, F., Wu, L., et al., 2020. Geologically Meaningful 40Ar/39Ar Ages of Altered Biotite from a Polyphase Deformed Shear Zone Obtained by in Vacuo Step-Heating Method: A Case Study of the Waziyü Detachment Fault, Northeast China. Minerals, 10(8): 648. https://doi.org/10.3390/min10080648
|
Tang, X. M., Liu, S. W., 1997. An Initial Research on the Extension Deformation Belt in the Archean Metamorphic Rocks in the Northern Taihang Mountains. Acta Scientiarum Naturalium Universitatis Pekinensis, 33(4): 447-455(in Chinese with English abstract).
|
Toy, V. G., Prior, D. J., Norris, R. J., 2008. Quartz Fabrics in the Alpine Fault Mylonites: Influence of Pre-Existing Preferred Orientations on Fabric Development during Progressive Uplift. Journal of Structural Geology, 30(5): 602-621. https://doi.org/10.1016/j.jsg.2008.01.001
|
Trap, P., Faure, M., Lin, W., et al., 2009. The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1/2): 80-98. https://doi.org/10.1016/j.precamres.2009.03.011
|
Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700 (in Chinese with English abstract).
|
Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2024. Formation and Evolution of Archean Continental Crust in the Anshan-Benxi Area, North China Craton: A Review. Earth Science, 49(11): 3855-3878 (in Chinese with English abstract).
|
Wang, J. P., Jiang, K., Xiao, D., et al., 2022. Mineral Chemistry of Biotite and Its Petrogenesis Implications in ca. 2.5 Ga Wangjiazhuang Granitic Pluton, North China Craton. Journal of Earth Science, 33(6): 1535-1548. https://doi.org/10.1007/s12583-020-1376-9
|
Wang, J. P., Kusky, T., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608: 929-946. https://doi.org/10.1016/j.tecto.2013.07.025
|
Wang, J. P., Kusky, T., Wang, L., et al., 2015. A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 220: 133-146. https://doi.org/10.1016/j.lithos.2015.01.029
|
Wang, J. P., Kusky, T., Wang, L., et al., 2017. Petrogenesis and Geochemistry of Circa 2.5 Ga Granitoids in the Zanhuang Massif: Implications for Magmatic Source and Neoarchean Metamorphism of the North China Craton. Lithos, 268: 149-162. https://doi.org/10.1016/j.lithos.2016.10.028
|
Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Biotite 40Ar/39Ar Geochronology of the Deformational Rocks from Zanhuang Metamorphic Domain in South Taihang Mountains and Their Tectonothermal Overprinting. Acta Petrologica Sinica, 19(1): 131-140 (in Chinese with English abstract).
|
Wu, J. S., 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Geological Publishing House, Beijing(in Chinese).
|
Xia, H. R., Liu, J. L., 2011. The Crystallographic Preferred Orientation of Quartz and Its Applications. Geological Bulletin of China, 30(1): 58-70(in Chinese with English abstract).
|
Xiao, D., Ning, W. B., Wang, J. P., et al., 2021. Neoarchean to Paleoproterozoic Tectonothermal Evolution of the North China Craton: Constraints from Geological Mapping and Th-U-Pb Geochronology of Zircon, Titanite and Monazite in Zanhuang Massif. Precambrian Research, 359: 106214. https://doi.org/10.1016/j.precamres.2021.106214
|
Xiao, L. L., Liu, F. L., 2015. Precambrian Metamorphic History of the Metamorphic Complexes in the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 31(10): 3012-3044(in Chinese with English abstract).
|
Xiao, L. L., Liu, F. L., Zhang, J., 2019. Response to the Early Neoarchean Tectono-Thermal Events in the North China Craton: Evidence of ca. 2.7 Ga TTG Gneisses from the Zuoquan Metamorphic Complex. Acta Petrologica Sinica, 35(2): 325-348(in Chinese with English abstract).
|
Xu, H. J., Jin, S. Y., Zheng, B. R., 2007. New Technique of Petrofabric: Electron Backscatter Diffraction(EBSD). Geoscience, 21(2): 213-225(in Chinese with English abstract).
|
Xu, J. H., Jiang, Y. P., Hu, S. L., et al., 2024. Petrogenesis and Tectonic Implications of the Paleoproterozoic A-Type Granites in the Xiong'ershan Area along the Southern Margin of the North China Craton. Journal of Earth Science, 35(2): 41-429. https://doi.org/10.1007/s12583-021-1424-0
|
Yang, C. H., Du, L. L., Ren, L. D., et al., 2011a. Petrogenesis and Geodynamic Setting of Jiandeng Potassic Granite at the End of the Neoarchean in Zanhuang Complex, North China Craton. Earth Science Frontiers, 18(2): 62-78(in Chinese with English abstract).
|
Yang, C. H., Du, L. L., Ren, L. D., et al., 2011b. The Age and Petrogenesis of the Xuting Granite in the Zanhuang Complex, Hebei Province: Constraints on the Structural Evolution of the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 27(4): 1003-1016(in Chinese with English abstract).
|
Zhai, M. G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36(in Chinese with English abstract).
|
Zhao, G. C., 2001. Palaeoproterozoic Assembly of the North China Craton. Geological Magazine, 138(1): 87-91. https://doi.org/10.1017/s0016756801005040
|
Zhao, G. C., 2002. SHRIMP U-Pb Zircon Ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton. American Journal of Science, 302(3): 191-226. https://doi.org/10.2475/ajs.302.3.191
|
Zhao, G. C., Cawood, P., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2/3): 181-199. https://doi.org/10.1016/S0301-9268(98)00090-4
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
|
Zhong, Y. T., Kusky, T. M., Wang, L., 2022. Giant Sheath-Folded Nappe Stack Demonstrates Extreme Subhorizontal Shear Strain in an Archean Orogen. Geology, 50(5): 577-582. https://doi.org/10.1130/G49599.1
|
翟明国, 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36.
|
河北地质矿产局, 1989. 河北北京天津区域地质志. 北京: 地质出版社.
|
侯贵廷, 李江海, 刘玉琳, 等, 2005. 华北克拉通古元古代末的伸展事件: 拗拉谷与岩墙群. 自然科学进展, 15(11): 1366-1373.
|
雷世和, 胡胜军, 赵占元, 等, 1994. 河北阜平、赞皇变质核杂岩构造及成因模式. 河北地质学院学报, 17(1): 54-64.
|
李江海, 侯贵廷, 黄雄南, 等, 2001. 华北克拉通对前寒武纪超大陆旋回的基本制约. 岩石学报, 17(2): 177-186.
|
马杏垣, 吴正文, 谭应佳, 等, 1979. 华北地台基底构造. 地质学报, 53(4): 293-304.
|
唐先梅, 刘树文, 1997. 太行山北段晚太古宙变质杂岩伸展变形带的初步研究. 北京大学学报(自然科学版), 33(4): 447-455.
|
万渝生, 董春艳, 颉颃强, 等, 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700.
|
万渝生, 董春艳, 颉颃强, 等, 2024. 华北克拉通鞍山-本溪地区太古宙地壳形成演化: 综述. 地球科学, 49(11): 3855-3878.
|
王岳军, 范蔚茗, 郭锋, 等, 2003. 赞皇变质穹隆黑云母40Ar/39Ar年代学研究及其对构造热事件的约束. 岩石学报, 19(1): 131-140.
|
伍家善, 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社.
|
夏浩然, 刘俊来, 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70.
|
肖玲玲, 刘福来, 2015. 华北克拉通中部造山带早前寒武纪变质演化历史评述. 岩石学报, 31(10): 3012-3044.
|
肖玲玲, 刘福来, 张健, 2019. 华北克拉通新太古代早期构造热事件的响应: 来自左权地区ca. 2.7 Ga TTG片麻岩的证据. 岩石学报, 35(2): 325-348.
|
徐海军, 金淑燕, 郑伯让, 2007. 岩石组构学研究的最新技术: 电子背散射衍射(EBSD). 现代地质, 21(2): 213-225.
|
杨崇辉, 杜利林, 任留东, 等, 2011a. 赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景. 地学前缘, 18(2): 62-78.
|
杨崇辉, 杜利林, 任留东, 等, 2011b. 河北赞皇地区许亭花岗岩的时代及成因: 对华北克拉通中部带构造演化的制约. 岩石学报, 27(4): 1003-1016.
|
![]() |
![]() |