• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 4
    Apr.  2023
    Turn off MathJax
    Article Contents
    Mei Shengyao, Zhong Qiming, Chen Shengshui, Shan Yibo, 2023. Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching. Earth Science, 48(4): 1634-1648. doi: 10.3799/dqkx.2022.360
    Citation: Mei Shengyao, Zhong Qiming, Chen Shengshui, Shan Yibo, 2023. Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching. Earth Science, 48(4): 1634-1648. doi: 10.3799/dqkx.2022.360

    Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching

    doi: 10.3799/dqkx.2022.360
    • Received Date: 2022-04-04
    • Publish Date: 2023-04-25
    • Landslide dam is a common geological disaster in mountainous area. Once breach, it would pose a serious threat to the lives and property safety of downstream people. In emergency response, it is necessary to rapidly and accurately predict the landslide dam breach hydrograph and morphology evolution. However, most of the state-of-the-art numerical models for landslide dam breaching cannot fully consider the geomorphological characteristics of the landslide dam, as well as the breach process under complicated topography. In this paper, the Reynolds-averaged Navier-Stokes equations combined with the renormalization group k-ε turbulence model were used to analyze the breach flow under the complex topography. Meanwhile, the sediment transport equations for bedload and suspended load were employed to simulate the breach morphology evolution process. The "11·03" Baige landslide dam failure case with detailed survey and hydrological data was selected as the representative for back analysis. The comparison of the calculated and measured results on breach hydrographs, hydrodynamic characteristics during dam breaching, and final breach morphologies show that the numerical simulation results can present good performance on landslide dam breach process, which testified to the rationality of the model.

       

    • loading
    • ASCE/EWRI Task Committee on Dam/Levee Breaching, 2011. Earthen Embankment Breaching. Journal of Hydraulic Engineering, 137(12): 1549-1564. https://doi.org/10.1061/(asce)hy.1943-7900.0000498
      Bagnold, R. A., 1966. An Approach to the Sediment Transport Problem from General Physics. U. S. Geological Survey Professional Paper, 422(1): 231-291.
      Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood. Science China Technological Sciences, 63(7): 1164-1176. https://doi.org/10.1007/s11431-019-1475-y
      Cai, Y. J., Luan, Y. S., Yang, Q. G., et al., 2019. Study on Structural Morphology and Dam-Break Characteristics of Baige Barrier Dam on Jinsha River. Yangtze River, 50(3): 15-22(in Chinese with English abstract).
      Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract).
      Chang, D. S., Zhang, L. M., 2010. Simulation of the Erosion Process of Landslide Dams Due to Overtopping Considering Variations in Soil Erodibility along Depth. Natural Hazards and Earth System Sciences, 10(4): 933-946. https://doi.org/10.5194/nhess-10-933-2010
      Chen, C., Zhang, L. M., Xiao, T., et al., 2020. Barrier Lake Bursting and Flood Routing in the Yarlung Tsangpo Grand Canyon in October 2018. Journal of Hydrology, 583: 124603. https://doi.org/10.1016/j.jhydrol.2020.124603
      Chen, S. S., Chen, Z. Y., Zhong, Q. M., 2019. Progresses of Studies on Failure Mechanism and Numerical Dam Failure Model of Earth-Rockfill Dam and Landslide Dam. Water Resources and Hydropower Engineering, 50(8): 27-36(in Chinese with English abstract).
      Chen, Z. Y., Ma, L. Q., Yu, S., et al., 2015. Back Analysis of the Draining Process of the Tangjiashan Barrier Lake. Journal of Hydraulic Engineering, 141(4): 05014011. https://doi.org/10.1061/(asce)hy.1943-7900.0000965
      Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100(7): 1054-1068. https://doi.org/10.1130/0016-7606(1988)1001054: tfafon>2.3.co;2 doi: 10.1130/0016-7606(1988)1001054:tfafon>2.3.co;2
      Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626
      Fan, X. M., Zhan, W. W., Dong, X. J., et al., 2018. Analyzing Successive Landslide Dam Formation by Different Triggering Mechanisms: The Case of the Tangjiawan Landslide, Sichuan, China. Engineering Geology, 243: 128-144. https://doi.org/10.1016/j.enggeo.2018.06.016
      Guan, M. F., Wright, N. G., Andrew Sleigh, P., 2014. Multimode Morphodynamic Model for Sediment-Laden Flows and Geomorphic Impacts. Journal of Hydraulic Engineering, 141(6): 04015006. https://doi.org/10.1061/(asce)hy.1943-7900.0000997
      Jiang, X. G., Wei, Y. W., 2020. Erosion Characteristics of Outburst Floods on Channel Beds under the Conditions of Different Natural Dam Downstream Slope Angles. Landslides, 17(8): 1823-1834. https://doi.org/10.1007/s10346-020-01381-y
      Kaurav, R., Mohapatra, P. K., 2019. Studying the Peak Discharge through a Planar Dam Breach. Journal of Hydraulic Engineering, 145(6): 06019010. https://doi.org/10.1061/(asce)hy.1943-7900.0001613
      Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912(in Chinese with English abstract).
      Liang, C. F., Abbasi, S., Pourshahbaz, H., et al., 2019. Investigation of Flow, Erosion, and Sedimentation Pattern around Varied Groynes under Different Hydraulic and Geometric Conditions: A Numerical Study. Water, 11(2): 235. https://doi.org/10.3390/w11020235
      Luo, J., Pei, X. J., Evans, S. G., et al., 2019. Mechanics of the Earthquake-Induced Hongshiyan Landslide in the 2014 Mw 6.2 Ludian Earthquake, Yunnan, China. Engineering Geology, 251: 197-213. https://doi.org/10.1016/j.enggeo.2018.11.011
      Marsooli, R., Wu, W. M., 2015. Three-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds. Journal of Hydraulic Engineering, 141(1): 04014066. https://doi.org/10.1061/(asce)hy.1943-7900.0000947
      Mastbergen, D. R., van den Berg, J. H., 2003. Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons. Sedimentology, 50(4): 625-637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
      Mei, S. Y., Chen, S. S., Zhong, Q. M., et al., 2021. Effects of Grain Size Distribution on Landslide Dam Breaching—Insights from Recent Cases in China. Frontiers in Earth Science, 9: 658578. https://doi.org/10.3389/feart.2021.658578
      Meyer-Peter, E., Muller, R., 1948. Formulas for Bed-Load Transport. Process of Congress IAHR, 6(2): 39-64.
      Movahedi, A., Kavianpour, M. R., Yamini, O. A., 2018. Evaluation and Modeling Scouring and Sedimentation around Downstream of Large Dams. Environmental Earth Sciences, 77(8): 320. https://doi.org/10.1007/s12665-018-7487-2
      Peng, M., Zhang, L. M., 2012. Breaching Parameters of Landslide Dams. Landslides, 9(1): 13-31. https://doi.org/10.1007/s10346-011-0271-y
      Qian, N., 1980. A Comparison of the Bed Load Formulas. Journal of Hydraulic Engineering, 11(4): 1-11(in Chinese with English abstract).
      Roseberry, J. C., Schmeeckle, M. W., Furbish, D. J., 2012. A Probabilistic Description of the Bed Load Sediment Flux: 2. Particle Activity and Motions. Journal of Geophysical Research: Earth Surface, 117(F3): F03032. https://doi.org/10.1029/2012jf002353
      Samma, H., Khosrojerdi, A., Rostam-Abadi, M., et al., 2020. Numerical Simulation of Scour and Flow Field over Movable Bed Induced by a Submerged Wall Jet. Journal of Hydroinformatics, 22(2): 385-401. https://doi.org/10.2166/hydro.2020.091
      Shi, Z. M., Ma, X. L., Peng, M., et al., 2014. Statistical Analysis and Efficient Dam Burst Modelling of Landslide Dams Based on a Large-Scale Database. Chinese Journal of Rock Mechanics and Engineering, 33(9): 1780-1790(in Chinese with English abstract).
      van Rijn, L. C., 1984. Sediment Transport, Part Ⅰ: Bed Load Transport. Journal of Hydraulic Engineering, 110(10): 1431-1456. https://doi.org/10.1061/(asce)0733-9429(1984)110: 10(1431) doi: 10.1061/(asce)0733-9429(1984)110:10(1431
      van Rijn, L. C., 2020. Erodibility of Mud-Sand Bed Mixtures. Journal of Hydraulic Engineering, 146(1): 04019050. https://doi.org/10.1061/(asce)hy.1943-7900.0001677
      Walder, J. S., Iverson, R. M., Godt, J. W., et al., 2015. Controls on the Breach Geometry and Flood Hydrograph during Overtopping of Noncohesive Earthen Dams. Water Resources Research, 51(8): 6701-6724. https://doi.org/10.1002/2014wr016620
      Yakhot, V., Orszag, S. A., Thangam, S., et al., 1992. Development of Turbulence Models for Shear Flows by a Double Expansion Technique. Physics of Fluids A: Fluid Dynamics, 4(7): 1510-1520. https://doi.org/10.1063/1.858424
      Zhang, J. Y., Fan, G., Li, H. B., et al., 2021. Large-Scale Field Model Tests of Landslide Dam Breaching. Engineering Geology, 293: 106322. https://doi.org/10.1016/j.enggeo.2021.106322
      Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979. https://doi.org/10.1007/s10346-019-01247-y
      Zhao, T. L., Chen, S. S., Wang, J. J., et al., 2016. Centrifugal Model Tests Overtopping Failure of Barrier Dams. Chinese Journal of Geotechnical Engineering, 38(11): 1965-1972(in Chinese with English abstract).
      Zhong, Q. M., Chen, S. S., Wang, L., et al., 2020. Back Analysis of Breaching Process of Baige Landslide Dam. Landslides, 17(7): 1681-1692. https://doi.org/10.1007/s10346-020-01398-3
      Zhong, Q. M., Wang, L., Chen, S. S., et al., 2021. Breaches of Embankment and Landslide Dams-State of the Art Review. Earth-Science Reviews, 216: 103597. https://doi.org/10.1016/j.earscirev.2021.103597
      Zhu, X. H., Liu, B. X., Peng, J. B., et al., 2021. Experimental Study on the Longitudinal Evolution of the Overtopping Breaching of Noncohesive Landslide Dams. Engineering Geology, 288: 106137. https://doi.org/10.1016/j.enggeo.2021.106137
      蔡耀军, 栾约生, 杨启贵, 等, 2019. 金沙江白格堰塞体结构形态与溃决特征研究. 人民长江, 50(3): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201903004.htm
      曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
      陈生水, 陈祖煜, 钟启明, 2019. 土石坝和堰塞坝溃决机理与溃坝数学模型研究进展. 水利水电技术, 50(8): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201908004.htm
      李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169
      钱宁, 1980. 推移质公式的比较. 水利学报, 11(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198004000.htm
      石振明, 马小龙, 彭铭, 等, 2014. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型. 岩石力学与工程学报, 33(9): 1780-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm
      赵天龙, 陈生水, 王俊杰, 等, 2016. 堰塞坝漫顶溃坝离心模型试验研究. 岩土工程学报, 38(11): 1965-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(1)

      Article views (584) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return