• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Peng Xi, Li Chunfeng, Song Taoran, Wan Xiaoli, Hou Wenai, Wen Yonglin, Li Yaqing, Liu Yutao, Tang Fugui, 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255. doi: 10.3799/dqkx.2022.366
    Citation: Peng Xi, Li Chunfeng, Song Taoran, Wan Xiaoli, Hou Wenai, Wen Yonglin, Li Yaqing, Liu Yutao, Tang Fugui, 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255. doi: 10.3799/dqkx.2022.366

    Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea

    doi: 10.3799/dqkx.2022.366
    • Received Date: 2022-07-22
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • Continent-ocean transition zone is a key position to understand the breakup of continental lithosphere and the initial seafloor spreading processes, but some questions about related geological processes still remain controversial in the northern margin of the South China Sea (SCS) today. Four new perspectives have been acquired by International Ocean Discovery Program (IODP) and deep geological and geophysical surveys in recent years. (1) Spatially, the continent-ocean boundary generally corresponds to positive-negative transition zone of the free-air gravity anomaly, but more accurate delimitation needs to be calibrated with seismic reflection and refraction data. True continent-ocean boundary between steady oceanic lithosphere and final breakup point of continental lithosphere should be located further toward the oceanic basin by about 20 km on average than previous definitions. (2) The continent-ocean transition zone represents a region with gradually weakened tectonism and strengthened magmatism in the distal margin, where magma underplated the lower crust of the continental slope after cessation of seafloor spreading. (3) In forearc areas of Mesozoic paleo-subduction zone, Cenozoic faulting inherited from early structures was reactivated to generate strong conjugated ductile shear deformation in the lithosphere. With further thinning of the lithosphere, rift center on the continental side stopped stretching and evolved into failed rift, represented by the southern sag of the Taixinan basin, the Baiyun sag and the Xisha trough. The hyper-extended crust and final continental breakup focused on the rift axis in the southern branch of the two conjugated rifts. Serpentinized mantle is found beneath failed rift, further indicating relatively weak syn-rifting magmatism. (4) The accretion pattern of initial oceanic crust in the SCS has significant variations along the marginal trend. Evidenced by seismic P-and S-wave velocities and attenuation characteristics, deep mantle upwelling and serpentinization, along with syn-rifting eruptive magma and intrusive reflectors occurred in the continent-ocean boundary of the northeastern SCS. This indicates a magma-poor northeastern continental margin. The continent-ocean boundary of the SCS could be an ideal candidate site of Moho drilling in the future with its elevated Moho and extremely thinned crust.

       

    • loading
    • Boillot, G., Grimaud, S., Mauffret, A., et al., 1980. Ocean-Continent Boundary off the Iberian Margin: A Serpentinite Diapir West of the Galicia Bank. Earth and Planetary Science Letters, 48(1): 23-34. https://doi.org/10.1016/0012-821x(80)90166-1
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      Chao, P., Manatschal, G., Chenin, P., et al., 2021. The Tectono-Stratigraphic and Magmatic Evolution of Conjugate Rifted Margins: Insights from the NW South China Sea. Journal of Geodynamics, 148: 101877. https://doi.org/10.1016/j.jog.2021.101877
      Chen, H., Xie, X., Mao, K., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808–819. https://doi.org/10.1007/s12583-020-1284-z
      Childress, L., The Expedition 368X Scientists, 2019. Expedition 368X Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station, Texas. https://doi.org/10.14379/iodp.pr.368X.2019
      Ding, W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      Ding, W.W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      Eagles, G., Pérez-Díaz, L., Scarselli, N., 2015. Getting over Continent Ocean Boundaries. Earth-Science Reviews, 151: 244-265. https://doi.org/10.1016/j.earscirev.2015.10.009
      Expedition 349 Scientists, 2014. South China Sea Tectonics: Opening of the South China Sea and Its Implications for Southeast Asian Tectonics, Climates, and Deep Mantle Processes since the Late Mesozoic. International Ocean Discovery Program Preliminary Report, College Station, Texas. https://doi.org/10.14379/iodp.pr.349.2014
      Fan, C., Xia, S., Cao, J., et al., 2020. Seismic Constraints on a Remnant Mesozoic Forearc Basin in the Northeastern South China Sea. Gondwana Research, 102: 77-94. https://doi.org/10.1016/j.gr.2020.10.006
      Gao, J., Wu, S., McIntosh, K., et al., 2015. The Continent-Ocean Transition at the Mid-Northern Margin of the South China Sea. Tectonophysics, 654: 1-19. https://doi.org/10.1016/j.tecto.2015.03.003
      Hou, W., Li, C.F., Wan, X., et al., 2019. Crustal S-Wave Velocity Structure across the Northeastern South China Sea Continental Margin: Implications for Lithology and Mantle Exhumation. Earth and Planetary Physics, 3 (4): 314-329. https://doi.org/10.26464/epp2019033
      Hsu, S. K., Yeh, Y. C., Doo, W. B., et al., 2004. New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and Their Tectonic Implications. Marine Geophysical Researches, 25(1/2): 29-44. https://doi.org/10.1007/s11001-005-0731-7
      Huang, H., Klingelhoefer, F., Qiu, X., et al., 2021. Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2): e2020TC006260. https://doi.org/10.1029/2020TC006260
      Ildefonse, B., Abe, N., Blackman, D. K., et al., 2010. The Mohole: A Crustal Journey and Mantle Quest, Workshop in Kanazawa, Japan, 3‒5 June 2010. Scientific Drilling, 10: 56-63. https://doi.org/10.5194/sd-10-56-2010
      Jian, Z., Larsen, H.C., Zarikian, C.A., et al., 2018. Expedition 368 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station, Texas. https://doi.org/10.14379/iodp.pr.368.2018
      Kelemen, P. B., Koga, K., Shimizu, N., 1997. Geochemistry of Gabbro Sills in the Crust-Mantle Transition Zone of the Oman Ophiolite: Implications for the Origin of the Oceanic Lower Crust. Earth and Planetary Science Letters, 146 (3-4): 475-488. https://doi.org/10.1016/s0012-821x(96)00235-x
      Larsen, H.C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      Lei, C., Ren, J., 2016. Hyper-Extended Rift Systems in the Xisha Trough, Northwestern South China Sea: Implications for Extreme Crustal Thinning ahead of a Propagating Ocean. Tectonophysics, 77: 846-864. https://doi.org/10.1016/j.marpetgeo.2016.07.022
      Li, C.F., Clift, P., Sun, Z., et al., 2019. Starting a New Ocean and Stopping It. Oceanography, 32 (1): 153-156. https://doi.org/10.5670/oceanog.2019.138
      Li, C.F., Li, J., Ding, W., et al., 2015. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014JB011686
      Li, C.F., Li, Z.K., Li, Y.Q., et al., 2020. Large Geological Differences between the East and Southwest Subbasins of the South China Sea. Science & Technology Review, 38(18): 40-45 (in Chinese with English abstract).
      Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(24): 3165-3181. https://doi.org/10.1007/s11434-012-5063-9
      Li, C.F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15 (12): 4958-4983. https://doi.org/10.1002/2014GC005567
      Li, C.F., Zhou, D., Li, G., et al., 2021. Geodynamic Problems in the Western Pacific and Future Scientific Drill Targets. Earth Science, 46(3): 759-769 (in Chinese with English abstract).
      Li, C.F., Zhou, Z., Hao, H., et al., 2008. Late Mesozoic Tectonic Structure and Evolution along the Present-Day Northeastern South China Sea Continental Margin. Journal of Asian Earth Sciences, 31(4-6): 546-561. https://doi.org/10.1016/j.jseaes.2007.09.004
      Li, Y., Abbas, A., Li, C. F., et al., 2020. Numerical Modeling of Failed Rifts in the Northern South China Sea Margin: Implications for Continental Rifting and Breakup. Journal of Asian Earth Sciences, 199: 104402. https://doi.org/10.1016/j.jseaes.2020.104402
      Lin, J., Li, J.B., Xu, Y.G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Acta Oceanologica Sinica, 41(10): 125-140 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4193.2019.10.009
      Liu, Y. T., Li, C. F., Wen, Y. L., et al., 2021. Mantle Serpentinization beneath a Failed Rift and Post-Spreading Magmatism in the Northeastern South China Sea Margin. Geophysical Journal International, 225(2): 811-828. https://doi.org/10.1093/gji/ggab006
      McIntosh, K., Lavier, L., van Avendonk, H., et al., 2014. Crustal Structure and Inferred Rifting Processes in the Northeast South China Sea. Marine and Petroleum Geology, 58: 612-626. https://doi.org/10.1016/j.marpetgeo.2014.03.012
      Nissen, S.S., Hayes, D.E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research, 100 (B11): 22407-22433. https://doi.org/10.1029/95jb01866
      Peng, X., Li, C. F., Shen, C., et al., 2022. Intra-Basement Structures and Their Implications for Rifting of the Northeastern South China Sea Margin. Journal of Asian Earth Sciences, 225: 105073. https://doi.org/10.1016/j.jseaes.2021.105073
      Péron-Pinvidic, G., Manatschal, G., 2009. The Final Rifting Evolution at Deep Magma-Poor Passive Margins from Iberia-Newfoundland: A New Point of View. International Journal of Earth Sciences, 98(7): 1581-1597. https://doi.org/10.1007/s00531-008-0337-9
      Prada, M., Sallares, V., Ranero, C. R., et al., 2015. The Complex 3-D Transition from Continental Crust to Backarc Magmatism and Exhumed Mantle in the Central Tyrrhenian Basin. Geophysical Journal International, 203(1): 63-78. https://doi.org/10.1093/gji/ggv271
      Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
      Song, T., Li, C. F., Wu, S., et al., 2019. Extensional Styles of the Conjugate Rifted Margins of the South China Sea. Journal of Asian Earth Sciences, 177: 117-128. https://doi.org/10.1016/j.jseaes.2019.03.008
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Sun, Z., Stock, J., Klaus, A., et al., 2018. Expedition 367 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station, Texas. https://doi.org/10.14379/iodp.pr.367.2018
      Tang, F.G., Liu, Y.T., Li, G., et al., 2022. Attenuation Characteristics of Refracted Seismic Wave in the Continent-Ocean Transition Zone of the Northeastern South China Sea. Chinese Journal of Geophysics, in press (in Chinese).
      Taylor, B., Hayes, D.E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of the Southeast Asian Seas and Islands: Part 2. Geophysical Monograph Series 27, AGU, Washington, D.C., 23-56. https://doi.org/10.1029/GM027p0023
      Wan, X., Li, C. F., Zhao, M., et al., 2019. Seismic Velocity Structure of the Magnetic Quiet Zone and Continent‐Ocean Boundary in the Northeastern South China Sea. Journal of Geophysical Research: Solid Earth, 124 (11): 11866-11899. https://doi.org/10.1029/2019jb017785
      Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      Wang, T.K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412 (3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      Wei, X.D., Ruan, A.G., Zhao, M.H., et al., 2011. A Wide-Angle OBS Profile across Dongsha Uplift and Chaoshan Depression in the Mid-Northern South China Sea. Chinese Journal of Geophysics, 54(12): 3325-3335 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.030
      Wen, Y., Li, C. F., Wang, L., et al., 2021. The Onset of Seafloor Spreading at the Northeastern Continent-Ocean Boundary of the South China Sea. Marine and Petroleum Geology, 133: 105255. https://doi.org/10.1016/j.marpetgeo.2021.105255
      Yan, P., Zhou, D., Liu, Z., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338 (1): 1-21. https://doi.org/10.1016/s0040-1951(01)00062-2
      Zhang, C., Manatschal, G., Pang, X., et al., 2020. Discovery of Mega‐Sheath Folds Flooring the Liwan Subbasin (South China Sea): Implications for the Rheology of Hyperextended Crust. Geochemistry, Geophysics, Geosystems, 21: e2020GC009023. https://doi.org/10.1029/2020GC009023
      Zhang, C., Sun, Z., Manatschal, G., et al., 2021. Ocean-Continent Transition Architecture and Breakup Mechanism at the Mid-Northern South China Sea. Earth-Science Reviews, 217: 103620. https://doi.org/10.1016/j.earscirev.2021.103620
      Zhao, Y., Ding, W., Ren, J., et al., 2021. Extension Discrepancy of the Hyper-Thinned Continental Crust in the Baiyun Rift, Northern Margin of the South China Sea. Tectonics, 40 (5): e2020TC006547. https://doi.org/10.1029/2020TC006547
      Zhong, L.F., Cai, G.Q., Koppers, A.A.P., et al., 2018. 40Ar/39Ar Dating of Oceanic Plagiogranite: Constraints on the Initiation of Seafloor Spreading in the South China Sea. Lithos, 302-303: 421-426. https://doi.org/10.1016/j.lithos.2018.01.018
      Zhou, D., Wang, W. Y., Wang, J. L., et al., 2006. Mesozoic Subduction-Accretion Zone in Northeastern South China Sea Inferred from Geophysical Interpretations. Science in China (Series D: Earth Sciences), 49(5): 471-482. https://doi.org/10.1007/s11430-006-0471-9
      Zhou, Z., Mei, L., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
      Zhu, J., Qiu, X., Kopp, H., et al., 2012. Shallow Anatomy of a Continent-Ocean Transition Zone in the Northern South China Sea from Multichannel Seismic Data. Tectonophysics, 554-557: 18-29. https://doi.org/10.1016/j.tecto.2012.05.027
      丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      李春峰, 李志康, 李亚清, 等, 2020. 南海海盆东‒西部地质特征存在巨大差异. 科技导报, 38(18): 40-45.
      李春峰, 周多, 李刚, 等, 2021. 西太平洋地球动力学问题与未来大洋钻探目标. 地球科学, 46(3): 759-769. doi: 10.3799/dqkx.2020.356
      林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201910008.htm
      任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
      唐福贵, 刘宇涛, 李刚, 等, 2022. 南海东北部洋陆过渡区域地震折射波衰减特征. 地球物理学报, 待刊.
      卫小冬, 阮爱国, 赵明辉, 等, 2011. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面. 地球物理学报, 54(12): 3325-3335. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112032.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (2214) PDF downloads(171) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return