• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Xin Liangwei, Li Saisai, Feng Zuohai, Liu Xingyuan, Wu Jiangbo, Wang Qiuyu, 2024. Applicability of Geothermometer to Granitic Mylonites in Nabu Ductile Shear Zone, Southeast Guangxi. Earth Science, 49(6): 1946-1965. doi: 10.3799/dqkx.2022.382
    Citation: Xin Liangwei, Li Saisai, Feng Zuohai, Liu Xingyuan, Wu Jiangbo, Wang Qiuyu, 2024. Applicability of Geothermometer to Granitic Mylonites in Nabu Ductile Shear Zone, Southeast Guangxi. Earth Science, 49(6): 1946-1965. doi: 10.3799/dqkx.2022.382

    Applicability of Geothermometer to Granitic Mylonites in Nabu Ductile Shear Zone, Southeast Guangxi

    doi: 10.3799/dqkx.2022.382
    • Received Date: 2022-08-30
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • The measurement of metamorphic and deformation temperature of mylonites is of great significance for the interpretation of deformation evolution process and thermochronological isotope dating results. In this paper it only discusses the applicability of each geothermometers in the Nabu ductile shear zone. Using the plastic deformation characteristics, such as the mineral assemblage, dynamic recrystallization characteristics of minerals and EBSD (electron back-scattered diffraction) quartz c-axis fabrics in mylonites, the metamorphic deformation temperature range of the Nabu ductile shear zone is estimated to be 400 to 550 ℃. Based on the electron probe microanalysis (EMPA), the chlorite compositional geothermometer, muscovite-chlorite geothermometer, Ti-in-muscovite and Ti-in-biotite geothermometers were applied to calculate the metamorphic deformation temperature of the granitic mylonite samples in the Nabu ductile shear zone. The corresponding temperatures are 305 to 325 ℃, 390 to 500 ℃, 395 to 492 ℃ and 473 to 565 ℃, 431 to 574 ℃. Through comparative analysis, it is found that the results obtained by using chlorite compositional geothermometer are obviously lower than the temperature range estimated by using plastic deformation characteristics and the results calculated by other geothermometers. Combined with the results of previous studies, the chlorite compositional geothermometer is only suitable for the temperature calculation of low temperature metamorphic deformation. The results obtained by the other three geothermometers are all within the error range of the temperature estimated by using the plastic deformation characteristics, indicating that they are suitable for the calculation of metamorphic deformation temperature of the Nabu ductile shear zone. Among them, the muscovite-chlorite geothermometer is suitable for low temperature mylonite, and Ti-in-muscovite and Ti-in-biotite geothermometers are suitable for relatively high temperature mylonite.

       

    • 致谢: 在电子探针和EBSD石英组构特征分析实验中,得到了桂林理工大学谢兰芳、刘奕志以及吴杰老师的大力支持,在此表示最诚挚的感谢!最后对两位匿名审稿专家对本文提出的建设性意见和责任编辑严谨的审阅表示衷心的感谢!
    • Anderson, J. L., 1996. Status of Thermobarometry in Granitic Batholiths. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 125-138. https://doi.org/10.1017/s0263593300006544
      Bai, D. Y., Zhong, X., Jia, P. Y., et al., 2014. Zircon SHRIMP U-Pb Dating and Geochemistry of Caledonian Miao'ershan Pluton in the Western Part of the Nanling Mountains and Their Tectonic Significance. Acta Petrologica et Mineralogica, 33(3): 407-423(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2014.03.001
      Cathelineau, M., 1988. Cation Site Occupancy in Chlorites and Illites as a Function of Temperature. Clay Minerals, 23(4): 471-485. https://doi.org/10.1180/claymin.1988.023.4.13
      Cathelineau, M., Nieva, D., 1985. A Chlorite Solid Solution Geothermometer the Los Azufres (Mexico) Geothermal System. Contributions to Mineralogy and Petrology, 91(3): 235-244. https://doi.org/10.1007/bf00413350
      Culshaw, N., Mosonyi, E., Reynolds, P., 2012. New 40Ar/39Ar Laser Single-Grain Ages of Muscovites from Mylonitic Schists in the Rodna Mountains, Eastern Carpathians, Romania: Correlations with Microstructure. International Journal of Earth Sciences, 101(1): 291-306. https://doi.org/10.1007/s00531-011-0674-y
      Deer, W. A., Howie, R. A., Iussman, J., 1962. Rock-Forming Minerals: Sheet Silicates. Longman, London, 270.
      Dong, S. W., Zhang, Y. Q., Long, C. X., et al., 2007. Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11): 1449-1461 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.11.001
      Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral Micas. US Geology Survey Professional Paper, 354, Washington, D.C., U.S.A., 11-49.
      Foster, M. D., 1962. Interpretation of the Composition and a Classification of the Chlorites. Geology Survey Professional Paper, 414, Washington, D.C., U.S.A., 1-30.
      Gomez-Rivas, E., Butler, R. W. H., Healy, D., et al., 2020. From Hot to Cold: The Temperature Dependence on Rock Deformation Processes: An Introduction. Journal of Structural Geology, 132: 103977. https://doi.org/10.1016/j.jsg.2020.103977
      Guo, S. Y., Huang, X. Q., Nong, J. N., et al., 2020. Deformation Characteristics and 40Ar-39Ar Age of the Sanbao Ductile Shear Zone on the Northwestern Margin of Yunkai Block, South China. Geotectonica et Metallogenia, 44(3): 357-366(in Chinese with English abstract).
      Harrison, T. M., Celeier, J., Aikman, A. B., et al., 2009. Diffusion of 40Ar in Muscovite. Geochimica et Cosmochimica Acta, 73(4): 1039-1051. doi: 10.1016/j.gca.2008.09.038
      Harrison, T. M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in Biotite: Temperature, Pressure and Compositional Effects. Geochimica et Cosmochimica Acta, 49(11): 2461-2468. https://doi.org/10.1016/0016-7037(85)90246-7
      Hirth, G., Tullis, J., 1992. Dislocation Creep Regimes in Quartz Aggregates. Journal of Structural Geology, 14(2): 145-159. https://doi.org/10.1016/0191-8141(92)90053-y
      Holdaway, M. J., 2000. Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer. American Mineralogist, 85(7-8): 881-892. https://doi.org/10.2138/am-2000-0701
      Hu, R. G., Feng, Z. H., Wu, J., et al., 2022. Mineral Feature and Temperature Conditions of Mylonitization of the Yuanbao Mountain Ductile Shear Zone, Northern Guangxi. Geochimica, 51(2): 176-193(in Chinese with English abstract).
      Jowett, E. C., 1991. Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. GAC/MAC/SEG Joint Annual Meeting, Toronto, 27-29.
      Kotov, N. V., 1975. Muscovite-Chlorite Paleothermometer. Proceedings of the USSR Academy of Sciences, 222(3): 700-704.
      Lanari, P., Wagner, T., Vidal, O., 2014. A Thermodynamic Model for Di-Trioctahedral Chlorite from Experimental and Natural Data in the System MgO-FeO-Al2O3-SiO2-H2O: Applications to P-T Sections and Geothermometry. Contributions to Mineralogy and Petrology, 167(2): 968. https://doi.org/10.1007/s00410-014-0968-8
      Larson, K. P., Price, R. A., Archibald, D. A., 2006. Tectonic Implications of 40Ar/39Ar Muscovite Dates from the Mt. Haley Stock and Lussier River Stock, near Fort Steele, British Columbia. Canadian Journal of Earth Sciences, 43(11): 1673-1684. https://doi.org/10.1139/e06-048
      Law, R. D., 2014. Deformation Thermometry Based on Quartz c-Axis Fabrics and Recrystallization Microstructures: A Review. Journal of Structural Geology, 66: 129-161. https://doi.org/10.1016/j.jsg.2014.05.023
      Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2012.06.002
      Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5-6): 772-793. https://doi.org/10.1130/B30021.1
      Lin, W. W., Peng, L. J., 1994. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data. Journal of Changchun University Earth Sciences, 24(2): 155-162(in Chinese with English abstract).
      Liu, J. H., Chen, Y. C., Li, Z. M. G., et al., 2021. Temperature and Timing of Ductile Deformation of the Longquanguan Shear Zone, Trans-North China Orogen. Precambrian Research, 359: 106217. https://doi.org/10.1016/j.precamres.2021.106217
      Liu, J. L., Cao, S. Y., Zou, Y. X., et al., 2008. EBSD Analysis of Rock Fabrics and Its Application. Geological Bulletin of China, 27(10): 1638-1645(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.10.005
      Liu, Y. J., Genser, J., Ge, X. H., et al., 2003. 40Ar/39Ar Age Evidence for Altyn Fault Tectonic Activities in Western China. Chinese Science Bulletin, 48(18): 2024-2030. https://doi.org/10.1007/bf03183998
      Luo, Z., 1990. The Geological Features and Tectonic Evolution in Bobai-Cenxi Deep Fault Zone, Guangxi. . Geology of Guangxi, 3(1): 25-34(in Chinese with English abstract).
      Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658(in Chinese with English abstract).
      Massonne, H. J., Schreyer, W., 1987. Phengite Geobarometry Based on the Limiting Assemblage with K-Feldspar, Phlogopite, and Quartz. Contributions to Mineralogy and Petrology, 96(2): 212-224. https://doi.org/10.1007/bf00375235
      McDougall, I., Harrison, T. M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York.
      Meng, L. X., Zhou, Y., Cai, Y. F., et al., 2020. Southwestern Boundary between the Yangtze and Cathaysia Blocks: Evidence from Detrital Zircon U-Pb Ages of Early Paleozoic Sedimentary Rocks from Qinzhou-Fangchenggang Area, Guangxi. Earth Science, 45(4): 1227-1242(in Chinese with English abstract).
      Miller, C. F., Stoddard, E. F., Bradfish, L. J., et al., 1981. Composition of Plutonic Muscovite: Genetic Implications. Canadian Mineralogist, 19(1): 25-34.
      Mukherjee, S., 2017. Review on Symmetric Structures in Ductile Shear Zones. International Journal of Earth Sciences, 106(5): 1453-1468. https://doi.org/10.1007/s00531-016-1366-4
      Nachit, H., Ibhi, A., Abia, E. H., et al., 2005. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus Geoscience, 337(16): 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002.
      Passchier, C. W., Trouw, R. A. J., 1996. Microtectonics. Springer, Berlin, 40-41.
      Qin, X. F., 2002. Characteristics and Deformation Mechanism of the Dextral Strike-Slip Ductile Shear Zone in Nabu Area, Southeastern Guangxi. Geology and Mineral Resources of South China, 18(2): 13-23(in Chinese with English abstract).
      Qin, Y., Feng, Z. H., Huang, J. Z., et al., 2021. Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significances. Earth Science, 46(11): 4017-4032(in Chinese with English abstract).
      Ren, J. S., Niu, B. G., He, Z. J., et al., 1997. Tectonic Framework and Geodynamic Evolution of Eastern China. Dixue Yanjiu, (29-30): 61-73(in Chinese).
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003
      Shu, L. S., 2021. Principal Features of Intracontinental Orogenic Belt and Discussions on Its Dynamics. Acta Geologica Sinica, 95(1): 98-106(in Chinese with English abstract).
      Simpson, C., 1985. Deformation of Granitic Rocks across the Brittle-Ductile Transition. Journal of Structural Geology, 7(5): 503-511. https://doi.org/10.1016/0191-8141(85)90023-9
      Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002. The Eastern Tonale Fault Zone: A 'Natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700 ℃. Journal of Structural Geology, 24(12): 1861-1884. https://doi.org/10.1016/s0191-8141(02)00035-4
      Sun, H. S., Li, J. H., Zhang, Y. Q., et al., 2018. Early Paleozoic Tectonic Reactivation of the Shaoxing-Jiangshan Fault Zone: Structural and Geochronological Constraints from the Chencai Domain, South China. Journal of Structural Geology, 110: 116-130. https://doi.org/10.1016/j.jsg.2018.03.003
      Tullis, J., Yund, R. A., 1991. Diffusion Creep in Feldspar Aggregates: Experimental Evidence. Journal of Structural Geology, 13(9): 987-1000. https://doi.org/10.1016/0191-8141(91)90051-j
      Wang, D. Z., Shen, W. Z., 2003. Genesis of Granitoids and Crustal Evolution in Southeast China. Earth Science Frontiers, 10(3): 209-220 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.03.020
      Wang, L., Long, W. G., Zhou, D., 2013. Zircon LA-ICP-MS U-Pb Age of Caledonian Granites from Precambrian Basement in Yunkai Area and Its Geological Implications. Geology in China, 40(4): 1016-1029 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.04.003
      Wang, X. D., Xu, D. M., Wang, L., et al., 2020. Reworking of Indosinian Tectono-Thermal Events in the Yunkai Massif: Gneissic Multi-Mineral U-Pb Geochronological Evidence. Earth Science, 45(5): 1653-1675(in Chinese with English abstract).
      Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696(in Chinese with English abstract).
      Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      Wang, Y. J., Fan, W., Cawood, P. A., et al., 2007a. Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China: Kinematics and 40Ar/39Ar Geochronological Constraints Tectonics, 26: 1-21. https://doi.org/10.1029/2007tc002099
      Wang, Y. J., Fan, W. M., Zhao, G. C., et al., 2007b. Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block. Gondwana Research, 12(4): 404-416. https://doi.org/10.1016/j.gr.2006.10.003
      Wang, Y. S., Yang, B. F., Wang, H. F., et al., 2016. A Discussion on Influence Factors of Quartz c-Axis Fabrics: An Example from Mylonite in the Tan-Lu Fault Zone. Acta Petrologica Sinica, 32(4): 965-975(in Chinese with English abstract).
      Wang, Y. S., Zhu, G., Wang, D. X., et al., 2005. An Attempt to Apply Three Geothermometers in the Interpretation of Low-Temperature Mylonites in the Southern Segment of the Tanlu Fault Zone. Geology in China, 32(4): 625-633 (in Chinese with English abstract).
      Wiewióra, A., Weiss, Z., 1990. Crystallochemical Classifications of Phyllosilicates Based on the Unified System of Projection of Chemical Composition: Ⅱ. The Chlorite Group. Clay Minerals, 25(1): 83-92. https://doi.org/10.1180/claymin.1990.025.1.09
      Wu, C. M., Chen, H. X., 2015a. Revised Ti-in-Biotite Geothermometer for Ilmenite- or Rutile-Bearing Crustal Metapelites. Science Bulletin, 60(1): 116-121. https://doi.org/10.1007/s11434-014-0674-y
      Wu, C. M., Chen, H. X., 2015b. Calibration of a Ti-in-Muscovite Geothermometer for Ilmenite- and Al2SiO5-Bearing Metapelites. Lithos, 212: 122-127. https://doi.org/10.1016/j.lithos.2014.11.008
      Wu, C. M., Cheng, B. H., 2006. Valid Garnet-Biotite (GB) Geothermometry and Garnet-Aluminum Silicate-Plagioclase-Quartz (GASP) Geobarometry in Metapelitic Rocks. Lithos, 89(1-2): 1-23. https://doi.org/10.1016/j.lithos.2005.09.002
      Xia, J. L., Huang, G. C., Ding, L. X., et al., 2018. Zircon U-Pb Dating, Petrogenesis and Tectonic Background of the Early Paleozoic Ningtan Gneissic Granitic Pluton, in the Yunkai Terrane. Earth Science, 43(7): 2276-2293 (in Chinese with English abstract).
      Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309: 56-87. https://doi.org/10.1016/j.precamres.2017.02.020
      Xiang, B. W., Zhu, G., Wang, Y. S., et al., 2007. Mineral Deformation Thermometer for Mylonitization. Advances in Earth Science, 22(2): 126-135 (in Chinese with English abstract).
      Xing, G. F., Lu, Q. D., Chen, R., et al., 2008. Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China—Comparing to the Yanshan Area in North China. Acta Geologica Sinica, 82(4): 451-463(in Chinese with English abstract).
      Xing, G. F., Yang, Z. L., Mao, J. R., et al., 2002. Characteristics of Early Jurassic Igneous Rocks on the Continental Margin of Southeastern China and Their Tectonic Significance. Geological Bulletin of China, 21(7): 384-391 (in Chinese with English abstract).
      Xu, H. J., Zhang, J. F., Zong, K. Q., et al., 2015. Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China. Lithos, 226: 17-30. https://doi.org/10.1016/j.lithos.2015.02.010
      Xu, Z. Q., Wang, Q., Liang, F. H., et al., 2009. Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamics. Acta Petrologica Sinica, 25(7): 1721-1736 (in Chinese with English abstract).
      Yan, Q. R., Li, Z. Y., Li, J. L., et al., 2000. Application of Rock Magnetic Fabric in the Study of Fault—Examplified by the Bobai-Hepu Fault. Chinese Journal of Geology (Scientia Geologica Sinica), 35(3): 363-369 (in Chinese with English abstract).
      Yang, X. Y., 2005. On the Studies of Ductile Shear Zones: Their Geological Significance. Advance in Earth Sciences, 20(7): 765-771 (in Chinese with English abstract).
      Yavuz, F., Kumral, M., Karakaya, N., et al., 2015. A Windows Program for Chlorite Calculation and Classification. Computers & Geosciences, 81: 101-113. https://doi.org/10.1016/j.cageo.2015.04.011
      Zane, A., Weiss, Z., 1998. A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 9(1): 51-56. https://doi.org/10.1007/BF02904455
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China: Earth Sciences, 43(10): 1553-1582(in Chinese).
      Zhang, H., Wang, J., Peng, T., et al., 2018. Temperature Conditions of Mylonitization of the Dashuiyu Ductile Shear Zone, Mt. Yunmeng, Beijing. Acta Petrologica Sinica, 34(6): 1801-1812 (in Chinese with English abstract).
      Zhang, Q., Li, X., 2021. The Application and Associated Problems of EBSD Technique in Fabric Analysis. Acta Petrologica Sinica, 37(4): 1000-1014 (in Chinese with English abstract).
      Zhang, Y. Q., Dong, S. W., Li, J. H., et al., 2012. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geoscientica Sinica, 33(3): 257-279(in Chinese with English abstract).
      Zhao, G. Y., 2017. Deformational Characteristics and 40Ar/39Ar Geochronology of the Ductile Shear Zone in the North Margin of Yunkai Block, Southeastern Guangxi (Dissertation). Guilin University of Technology, Guilin (in Chinese with English abstract).
      Zhao, Y., Xu, G., Zhang, S. H., et al., 2004. Yanshanian Movement and Conversion Oftectonic Regimes in East Asia. Earth Science Frontiers, 11(3): 319-328 (in Chinese with English abstract).
      Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
      Zhu, G., Wang, Y. S., Niu, M. L., et al., 2004. Synorogenic Movement of the Tan-Lu Fault Zone. Earth Science Frontiers, 11(3): 169-182 (in Chinese with English abstract).
      柏道远, 钟响, 贾朋远, 等, 2014. 南岭西段加里东期苗儿山岩体锆石SHRIMPU-Pb年龄、地球化学特征及其构造意义. 岩石矿物学杂志, 33(3): 407-423. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201403001.htm
      董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711002.htm
      郭尚宇, 黄锡强, 农军年, 等, 2020. 云开地块西北缘三堡韧性剪切带变形特征及40Ar-39Ar年代学研究. 大地构造与成矿学, 44(3): 357-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003003.htm
      胡荣国, 冯佐海, 吴杰, 等, 2022. 桂北元宝山韧性剪切带糜棱岩矿物化学特征及变质条件. 地球化学, 51(2): 176-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202202003.htm
      李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解: 观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201206001.htm
      林文蔚, 彭丽君, 1994. 由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+. 长春地质学院学报, 24(2): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ402.004.htm
      刘俊来, 曹淑云, 邹运鑫, 等, 2008. 岩石电子背散射衍射(EBSD)组构分析及应用. 地质通报, 27(10): 1638-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810006.htm
      罗璋, 1990. 广西博白-岑溪断裂带地质特征与构造演化. 广西地质, 3(1): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199001002.htm
      毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm
      蒙麟鑫, 周云, 蔡永丰, 等, 2020. 扬子与华夏地块西南端界线: 来自钦防地区碎屑锆石U-Pb年代学的制约. 地球科学, 45(4): 1227-1242. doi: 10.3799/dqkx.2019.090?viewType=HTML
      覃小锋, 2002. 桂东南那卜韧性剪切带的基本特征及形成机制. 华南地质与矿产, 18(2): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200202002.htm
      秦亚, 冯佐海, 黄靖哲, 等, 2021. 桂北地区三门韧性剪切带的厘定及其构造意义. 地球科学, 46(11): 4017-4032. doi: 10.3799/dqkx.2020.353?viewType=HTML
      任纪舜, 牛宝贵, 和政军, 等, 1997. 中国东部的构造格局和动力演化. 地学研究, (29-30): 61-73. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199700001006.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      舒良树, 2021. 陆内造山带特征及其动力学讨论. 地质学报, 95(1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101008.htm
      王德滋, 沈渭洲, 2003. 中国东南部花岗岩成因与地壳演化. 地学前缘, 10(3): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303031.htm
      王磊, 龙文国, 周岱, 2013. 云开地区加里东期花岗岩锆石U-Pb年龄及其地质意义. 中国地质, 40(4): 1016-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201304004.htm
      王祥东, 徐德明, 王磊, 等, 2020. 云开地块印支期构造热事件叠加改造: 来自片麻岩中多矿物U-Pb年代学的证据. 地球科学, 45(5): 1653-1675. doi: 10.3799/dqkx.2019.151?viewType=HTML
      王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735, 696. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705004.htm
      王勇生, 杨秉飞, 王海峰, 等, 2016. 石英c轴组构影响因素探讨: 以郯庐断裂带糜棱岩为例. 岩石学报, 32(4): 965-975. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604003.htm
      王勇生, 朱光, 王道轩, 等, 2005. 地质温度计在郯庐断裂带南段低温糜棱岩中的尝试. 中国地质, 32(4): 625-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200504011.htm
      夏金龙, 黄圭成, 丁丽雪, 等, 2018. 云开地区早古生代宁潭片麻状花岗质岩体锆石U-Pb定年、岩石成因及构造背景. 地球科学, 43(7): 2276-2293. doi: 10.3799/dqkx.2018.529?viewType=HTML
      向必伟, 朱光, 王勇生, 等, 2007. 糜棱岩化过程中矿物变形温度计. 地球科学进展, 22(2): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702001.htm
      邢光福, 卢清地, 陈荣, 等, 2008. 华南晚中生代构造体制转折结束时限研究: 兼与华北燕山地区对比. 地质学报, 82(4): 451-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804003.htm
      邢光福, 杨祝良, 毛建仁, 等, 2002. 东南大陆边缘早侏罗世火成岩特征及其构造意义. 地质通报, 21(7): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200207004.htm
      许志琴, 王勤, 梁凤华, 等, 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用. 岩石学报, 25(7): 1721-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm
      阎全人, 李增悦, 李继亮, 等, 2000. 岩石磁组构在断裂变形性状与期次研究中的应用: 以广西博白-合浦断裂为例. 地质科学, 35(3): 363-369. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200003010.htm
      杨晓勇, 2005. 论韧性剪切带研究及其地质意义. 地球科学进展, 20(7): 765-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200507010.htm
      张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      张慧, 王娟, 彭涛, 等, 2018. 北京云蒙山大水峪韧性剪切带糜棱岩的变形温度. 岩石学报, 34(6): 1801-1812. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806016.htm
      张青, 李馨, 2021. 电子背散射衍射技术(EBSD)在组构分析中的应用和相关问题. 岩石学报, 37(4): 1000-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104004.htm
      张岳桥, 董树文, 李建华, 等, 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm
      赵国英, 2017. 云开地块北缘韧性剪切带的变形特征及40Ar/39Ar年代学研究(硕士学位论文). 桂林: 桂林理工大学
      赵越, 徐刚, 张拴宏, 等, 2004. 燕山运动与东亚构造体制的转变. 地学前缘, 11(3): 319-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403042.htm
      朱光, 王勇生, 牛漫兰, 等, 2004. 郯庐断裂带的同造山运动. 地学前缘, 11(3): 169-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403023.htm
    • Relative Articles

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(3)

      Article views (566) PDF downloads(91) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return