Citation: | Wang Huijun, Lu Shuangfang, Qiao Lu, Zhang Jun, Chen Fangwen, He Xipeng, Gao Yuqiao, Mei Junwei, Ren Jianhua, Wang Wei, 2023. Parameter Sensitivity Analysis in Geology-Engineering Integration Optimization for Shale Gas in Nanchuan Block. Earth Science, 48(1): 267-278. doi: 10.3799/dqkx.2022.383 |
Chen, X. J., 2003. The Application of the Analysis of Profit and Loss Equality in Oil Developmental Economy (Dissertation). Tianjin University, Tianjin (in Chinese with English abstract).
|
Clarkson, C. R., 2013. Production Data Analysis of Unconventional Gas Wells: Review of Theory and Best Practices. International Journal of Coal Geology, 109-110: 101-146. https://doi.org/10.1016/j.coal.2013.01.002
|
Freund, Y., 1995. Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2): 256-285. https://doi.org/10.1006/inco.1995.1136
|
Golzari, A., Sefat, M. H., Jamshidi, S., 2015. Development of an Adaptive Surrogate Model for Production Optimization. Journal of Petroleum Science and Engineering, 133: 677-688. https://doi.org/10.1016/j.petrol.2015.07.012
|
Guo, Y. D., Wang, W. H., Liu, H., et al., 2018. Research on the Production Influencing Factors of Shale Gas Multi-Stage Fractured Horizontal Well. Bulletin of Science and Technology, 34(4): 72-78, 83 (in Chinese with English abstract).
|
He, T. H., Li, W. H., Lu, S. F., et al., 2022. Mechanism and Geological Significance of Anomalous Negative δ13Ckerogen in the Lower Cambrian, NW Tarim Basin, China. Journal of Petroleum Science and Engineering, 208: 109384. https://doi.org/10.1016/j.petrol.2021.109384
|
He, T. H., Lu, S. F., Li, W. H., et al., 2018. Effect of Salinity on Source Rock Formation and Its Control on the Oil Content in Shales in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin, Central China. Energy & Fuels, 32(6): 6698-6707. https://doi.org/10.1021/acs.energyfuels.8b01075
|
He, X. P., 2021. Sweet Spot Evaluation System and Enrichment and High Yield Influential Factors of Shale Gas in Nanchuan Area of Eastern Sichuan Basin. Natural Gas Industry, 41(1): 59-71 (in Chinese with English abstract).
|
Huang, H. Y., Fan, Y., Zeng, B., et al., 2020. Geology- Engineering Integration of Platform Well in Changning Block. Science Technology and Engineering, 20(1): 175-182 (in Chinese with English abstract).
|
Kulga, B., Artun, E., Ertekin, T., 2017. Development of a Data-Driven Forecasting Tool for Hydraulically Fractured, Horizontal Wells in Tight-Gas Sands. Computers & Geosciences, 103: 99-110. https://doi.org/10.1016/j.cageo.2017.03.009
|
Li, D. H., Yao, H. S., He, X. P., et al., 2022. Geological Theory and Resource Potential of Atmospheric Pressure Shale Gas in Complex Structural Areas. Geological Publishing House, Beijing (in Chinese).
|
Li, Q. H., Chen, M., Wang, F. P., et al., 2012. Influences of Engineering Factors on Shale Gas Productivity: A Case Study from the Haynesville Shale Gas Reservoir in North America. Natural Gas Industry, 32(4): 54-59, 123 (in Chinese with English abstract).
|
Li, W. B., Li, J. Q., Lu, S. F., et al., 2022. Evaluation of Gas-in-Place Content and Gas-Adsorbed Ratio Using Carbon Isotope Fractionation Model: A Case Study from Longmaxi Shales in Sichuan Basin, China. International Journal of Coal Geology, 249: 103881. https://doi.org/10.1016/j.coal.2021.103881
|
Liu, W. C., Zhang, Q. T., Zhu, W. Y., 2019. Numerical Simulation of Multi-Stage Fractured Horizontal Well in Low-Permeable Oil Reservoir with Threshold Pressure Gradient with Moving Boundary. Journal of Petroleum Science and Engineering, 178: 1112-1127. https://doi.org/10.1016/j.petrol.2019.04.033
|
Liu, X., Zhang, L. N., Zhang, Y. Z., 2018. Influence of Fracturing Parameters on Development Effects of Shale Gas Wells in Southeast Sichuan Basin: A Case of Well LP-133HF. Reservoir Evaluation and Development, 8(5): 77-80 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-1426.2018.05.013
|
Nguyen-Le, V., Shin, H., 2019. Development of Reservoir Economic Indicator for Barnett Shale Gas Potential Evaluation Based on the Reservoir and Hydraulic Fracturing Parameters. Journal of Natural Gas Science and Engineering, 66: 159-167. https://doi.org/10.1016/j.jngse.2019.03.024
|
Qiao, L., Wang, H. J., Lu, S. F., et al., 2022. Novel Self-Adaptive Shale Gas Production Proxy Model and Its Practical Application. ACS Omega, 7(10): 8294-8305. https://doi.org/10.1021/acsomega.1c05158
|
Rammay, M. H., Awotunde, A. A., 2016. Stochastic Optimization of Hydraulic Fracture and Horizontal Well Parameters in Shale Gas Reservoirs. Journal of Natural Gas Science and Engineering, 36: 71-78. https://doi.org/10.1016/j.jngse.2016.10.002
|
Wang, H. J., Qiao, L., Zhang, J., et al., 2022. An Effective Integration Optimization Algorithm for Regional Fracturing Design and Drilling Placement. Journal of Natural Gas Science and Engineering, 101: 104505. https://doi.org/10.1016/j.jngse.2022.104505
|
Wang, H. J., Qiao, L., Lu, S. F., et al., 2021a. A Novel Shale Gas Production Prediction Model Based on Machine Learning and Its Application in Optimization of Multistage Fractured Horizontal Wells. Frontiers in Earth Science, 9: 726537. https://doi.org/10.3389/feart.2021.726537
|
Wang, S., Qin, C. X., Feng, Q. H., et al., 2021b. A Framework for Predicting the Production Performance of Unconventional Resources Using Deep Learning. Applied Energy, 295: 117016. https://doi.org/10.1016/j.apenergy.2021.117016
|
Wang, S. H., Chen, Z., Chen, S. N., 2019. Applicability of Deep Neural Networks on Production Forecasting in Bakken Shale Reservoirs. Journal of Petroleum Science and Engineering, 179: 112-125. https://doi.org/10.1016/j.petrol.2019.04.016
|
Xu, S. Q., Feng, Q. H., Wang, S., et al., 2018. Optimization of Multistage Fractured Horizontal Well in Tight Oil Based on Embedded Discrete Fracture Model. Computers & Chemical Engineering, 117: 291-308. https://doi.org/10.1016/j.compchemeng.2018.06.015
|
Yang, C. D., Vyas, A., Datta-Gupta, A., et al., 2017. Rapid Multistage Hydraulic Fracture Design and Optimization in Unconventional Reservoirs Using a Novel Fast Marching Method. Journal of Petroleum Science and Engineering, 156: 91-101. https://doi.org/10.1016/j.petrol.2017.05.004
|
Yao, J., Li, Z. H., Liu, L. J., et al., 2021. Optimization of Fracturing Parameters by Modified Variable-Length Particle-Swarm Optimization in Shale-Gas Reservoir. SPE Journal, 26(2): 1032-1049. https://doi.org/10.2118/205023-PA
|
Yong, R., Chang, C., Zhang, D. L., et al., 2020. Optimization of Shale-Gas Horizontal Well Spacing Based on Geology-Engineering-Economy Integration: A Case Study of Well Block Ning 209 in the National Shale Gas Development Demonstration Area. Natural Gas Industry, 40(7): 42-48 (in Chinese with English abstract).
|
Zhang, L., Li, Z. P., Lai, F. P., et al., 2019. Integrated Optimization Design for Horizontal Well Placement and Fracturing in Tight Oil Reservoirs. Journal of Petroleum Science and Engineering, 178: 82-96. https://doi.org/10.1016/j.petrol.2019.03.006
|
陈晓江, 2003. 盈亏分析在油田开发经济中的设计理论和方法研究(硕士学位论文). 天津: 天津大学.
|
郭艳东, 王卫红, 刘华, 等, 2018. 页岩气多段压裂水平井产能影响因素研究. 科技通报, 34(4): 72-78, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201804015.htm
|
何希鹏, 2021. 四川盆地东部页岩气甜点评价体系与富集高产影响因素. 天然气工业, 41(1): 59-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101007.htm
|
黄浩勇, 范宇, 曾波, 等, 2020. 长宁区块页岩气水平井组地质工程一体化. 科学技术与工程, 20(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202001028.htm
|
李东海, 姚红生, 何希鹏, 等, 2022. 复杂构造区常压页岩气地质理论与资源潜力. 北京: 地质出版社.
|
李庆辉, 陈勉, Wang, F. P., 等, 2012. 工程因素对页岩气产量的影响——以北美Haynesville页岩气藏为例. 天然气工业, 32(4): 54-59, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204016.htm
|
刘欣, 张莉娜, 张耀祖, 2018. 川东南页岩气井压裂参数对开发效果的影响——以LP-133HF井为例. 油气藏评价与开发, 8(5): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201805013.htm
|
雍锐, 常程, 张德良, 等, 2020. 地质工程—经济一体化页岩气水平井井距优化——以国家级页岩气开发示范区宁209井区为例. 天然气工业, 40(7): 42-48. 16 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202007007.htm
|