• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Peng Guangrong, Du Jiayuan, Feng Jin, Ding Lin, Li Zhigao, Li Xiaoping, 2022. Depositional Setting of Ancient Pearl River Delta during Early-to-Middle Miocene: Implications for Forcing Factors. Earth Science, 47(11): 3989-4004. doi: 10.3799/dqkx.2022.390
    Citation: Peng Guangrong, Du Jiayuan, Feng Jin, Ding Lin, Li Zhigao, Li Xiaoping, 2022. Depositional Setting of Ancient Pearl River Delta during Early-to-Middle Miocene: Implications for Forcing Factors. Earth Science, 47(11): 3989-4004. doi: 10.3799/dqkx.2022.390

    Depositional Setting of Ancient Pearl River Delta during Early-to-Middle Miocene: Implications for Forcing Factors

    doi: 10.3799/dqkx.2022.390
    • Received Date: 2022-06-24
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • The ancient Pearl River delta (PRD) is an important target for oil and gas exploration in the Pearl River Mouth basin, whereas its overall sedimentary characteristics have not been fully revealed, limiting the recognition of multi-type sand bodies and favorable traps in the future. Utilizing heavy mineral data, core, well logs, and large-scale 3D seismic data, we comprehensively analyze the seismic geomorphology of the ancient PRD to accurately reconstruct the distribution of sedimentary facies and the macro-sedimentary patterns of the Middle Miocene ancient PRD. Heavy mineral data analysis results show that the Paleo-Pearl River distributary channel system mainly originated from two main channel branches on the west and the east sides; thus, the basic two-branch pattern is determined in the Paleo-Pearl River delta. And the characteristics of heavy mineral assemblages on both sides are similar to those of the modern Xijiang River and the Dongjiang-Beijiang rivers, respectively, suggesting a similarity between flow pathways in the Miocene and the modern Pearl River. Meanwhile, seismic geomorphology analysis results of the distributary channel and the shore-parallel sand bodies in the distal ancient PRD show that the paleo-delta may be influenced by a hybrid dynamic process of fluvial, wave, and tide. What's more, a continuous southwest paleocurrent may have an obvious control on the overall deflected facies pattern of the ancient PRD.

       

    • loading
    • Ainsworth, R. B., Vakarelov, B. K., Nanson, R. A., 2011. Dynamic Spatial and Temporal Prediction of Changes in Depositional Processes on Clastic Shorelines: Toward Improved Subsurface Uncertainty Reduction and Management. American Association of Petroleum Geologists Bulletin, 95: 267-297. https://doi.org/10.1306/06301010036
      Bourget, J., Ainsworth, R. B., Thompson, S., 2014. Seismic Stratigraphy and Geomorphology of a Tide or Wave Dominated Shelf-Edge Delta (NW Australia): Process-Based Classification from 3D Seismic Attributes and Implications for the Prediction of Deep-Water Sands. Marine and Petroleum Geology, 57: 359-384. https://doi.org/10.1016/j.marpetgeo.2014.05.021
      Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375.
      Catuneanu, O., Abreu, V., Bhattacharya, J. P., et al., 2009. Towards the Standardization of Sequence Stratigraphy. Earth-Science Review, 92: 1-33. https://doi.org/10.1016/j.earscirev.2008.10.003
      Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      Chen, Y. T., 1994. Character of the Heavy Mineral in the Surface Sediment of Lingding Yang in the Pearl River Mouth and Their Reflection to the Invasion of Shelf's Water. Acta Scientiarum Naturalium Universitatis Sunyatseni, 33(4): 103-110 (in Chinese with English abstract).
      Darmadi, Y., Willis, B. J., Dorobek, S. L., 2007. Three-Dimensional Seismic Architecture of Fluvial Sequences on the Low-Gradient Sunda Shelf, Offshore Indonesia. Journal of Sedimentary Research, 77(3): 225-238. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      Galloway, W. E., 1975. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems. Houston Geological Society, Houston, 87-98.
      Gao, Y. D., Zhang, X. T., Li, Z. G., et al., 2021. Variability in Sequence Stratigraphic Architecture of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development. Earth Science, 46(5): 1758-1770 (in Chinese with English abstract).
      Gong, Z. S., Li, S. T., 1997. Analysis and Hydrocarbon Accumulation of the Continental Margin Basin of the South China Sea. Science Press, Beijing, 532 (in Chinese).
      He, M., Zhuo, H., Chen, W., et al., 2017. Sequence Stratigraphy and Depositional Architecture of the Pearl River Delta System, Northern South China Sea: An Interactive Response to Sea Level, Tectonics and Paleoceanography. Marine and Petroleum Geology, 84: 76-101. doi: 10.1016/j.marpetgeo.2017.03.022
      Jackson, C. A. L., Grunhagen, H., Howell, J. A., et al., 2010.3D Imaging of Lower Delta-Plain Beach Ridge: Lower Brent Group, Northern North Sea. Journal of the Geological Society London, 167: 1225-1236. https://doi.org/10.1144/0016-76492010-053
      Jiao, P., Guo, J. H., Wang, X. K., et al., 2018. Detrital Zircon Genesis and Provenance Tracing for Reservoirs in the Lower Zhujiang Formation in Hanjiang-Lufeng Sag, Pearl River Mouth Basin. Oil & Gas Geology, 39(2): 239-253 (in Chinese with English abstract).
      Li, X. P., Liu, B. J., Ding, L., et al., 2016. Depositional Elements Definition of Marine Delta and Significance to Sand Body Correlation in Petroleum Exploration: From Hydrodynamic Analysis on Modern Pearl River Delta. Acta Sedimentologica Sinica, 34(3): 555-562 (in Chinese with English abstract).
      Li, Z. G., Ding, L., Li, X. P., et al., 2022. Sedimentary Characteristics and Controlling Factors of the Western Zhu I Depression during the Early-Middle Miocene, Pearl River Mouth Basin. Journal of Palaeogeography, 24(1): 99-111 (in Chinese with English abstract).
      Liang, W., Li, X. P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884 (in Chinese with English abstract).
      Liu, A., Wu, S. M., Cheng, W. H., et al., 2011. Tectonic Subsidence History and Dynamic Mechanism of the Dongsha Rise in the Zhujiang River Mouth Basin. Acta Oceanologica Sinica, 33(6): 117-124 (in Chinese with English abstract).
      Luan, X. W., Peng, X. C., Wang, Y. M., et al., 2010. Characteristics of Sand Waves on the Northern South China Sea Shelf and Its Formation. Acta Geologica Sinica, 84(2): 209-245 (in Chinese with English abstract).
      Lüdmann, T., Wong, H. K., Wang, P., et al., 2001. Plio-Quaternary Sedimentation Processes and Neotectonics of the Northern Continental Margin of the South China Sea. Marine Geology, 172: 331-358. https://doi.org/10.1016/S0025-3227(00)00129-8
      Maynard, J. R., 2006. Fluvial Response to Active Extension: Evidence from 3D Seismic Data from the Frio Formation (Oligo-Miocene) of the Texas Gulf of Mexico Coast, USA. Sedimentology, 53: 515-536. https://doi.org/10.1111/j.1365-3091.2006.00782.x
      Mi, L. J., Zhang, X. T., Ding, L., et al., 2018. Distribution Characteristics and Exploration Strategy of Middle-Shallow Lithologic Reservoirs in Offshore Mature Exploration Areas: A Case Study on Huizhou Sag in the Pearl River Mouth Basin. China Petroleum Exploration, 23(6): 10-19 (in Chinese with English abstract).
      Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. American Association of Petroleum Geologists Bulletin, 86: 1201-1216. https://doi.org/10.1306/61EEDC56-173E-11D7-8645000102C1865D
      Paumard, V., Bourget, J., Payenberg, T., et al., 2020. Controls on Deep-Water Sand Delivery beyond the Shelf Edge: Accommodation, Sediment Supply, and Deltaic Process Regime. Journal of Sedimentary Research, 90(1): 104-130. https://doi.org/10.2110/jsr.2020.2
      Peng, Y., Olariu, C., Steel, R. J., 2020. Recognizing Tide-and Wave-Dominated Compound Deltaic Clinothems in the Rock Record. Geology, 48(12): 1149-1153. https://doi.org/10.1111/sed.12240
      Posamentier, H. W., Allen, G. P., 1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. SEPM Concepts Sedimentology Paleontology, 7: 210. https://doi.org/10.2110/csp.99.07
      Rossi, V. M., Steel, R. J., 2016. The Role of Tidal, Wave and River Currents in the Evolution of Mixed-Energy Deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63(4): 824-864. https://doi.org/10.1111/sed.12240
      Shao, L., Cui, Y. C., Qiao, P. J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo-Drainage System Evolution. Journal of Paleogeography, 21(2): 216-239 (in Chinese with English abstract).
      Shao, L., Pang, X., Qiao, P. J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185 (in Chinese with English abstract).
      Wu, J., Ding, L., Zhang, X. Z., et al., 2022. Key Technologies of Lithologic Trap Exploration in Marine Delta of Enping Sag in Pearl River Mouth Basin. Journal of Yangtze University (Natural Science Edition), 19(1): 44-53 (in Chinese with English abstract).
      Wu, J., Zhang, X. Z., Bai, H. J., et al., 2021. Miocene Tidal Control System and Its Lithologic Trap Exploration Significance in Yangjiang Sag, Pearl River Mouth Basin. Earth Science, 46(10): 3673-3689 (in Chinese with English abstract).
      Wu, S. G., Liu, Z., Wang, W. Y., et al., 2004. Late Cenozoic Neotectonics in the Dongsha Islands Region and Its Responses to Collision between Chinese Continental Margin and Luzon. Oceanologia et Limnologia Sinica, 35(6): 481-490 (in Chinese with English abstract).
      Xiang, X. H., Shao, L., Qiao, P. J., et al., 2011. Characteristics of Heavy Minerals in Pearl River Sediments and Their Implications for Provenance. Marine Geology & Quaternary Geology, 31(6): 27-35 (in Chinese with English abstract).
      Zhang, X. T., Li, X. P., Xuan, C. J., et al., 2021. Exploration Practice and Direction of Lithologic Reservoirs in Non-Source Rock Strata in Shallow Water Areas of the Eastern South China Sea. Acta Petrolei Sinica, 42(6): 695-707 (in Chinese with English abstract).
      Zhao, M., Shao, L., Qiao, P. J., et al., 2015. Characteristics of Detrital Zircon U-Pb Geochronology of the Pearl River Sands and Its Implication on Provenances. Journal of Tongji University (Natural Science), 43(6): 915-923 (in Chinese with English abstract).
      Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      Zhuo, H. T., Wang, Y. M., Shi, H. S., et al., 2015. Contrasting Fluvial Styles across the Mid-Pleistocene Climate Transition in the Northern Shelf of the South China Sea: Evidence from 3D Seismic Data. Quaternary Science Reviews, 129: 128-146. https://doi.org/10.1016/j.quascirev.2015.10.012
      陈耀泰, 1994. 珠江口伶仃洋表层沉积物的重矿物特征及其对陆架水入侵的反映. 中山大学学报(自然科学版), 33(4): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ404.017.htm
      高阳东, 张向涛, 李智高, 等, 2021. 珠江口盆地恩平凹陷北带下‒中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758-1770. doi: 10.3799/dqkx.2021.011
      龚再升, 李思田, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社, 532.
      焦鹏, 郭建华, 王玺凯, 等, 2018. 珠江口盆地韩江‒陆丰凹陷珠江组下段碎屑锆石来源与储层物源示踪. 石油与天然气地质, 39(2): 239-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802005.htm
      李小平, 柳保军, 丁琳, 等, 2016. 海相三角洲沉积单元划分及其对勘探砂体对比的意义——基于现代珠江三角洲沉积水动力综合研究. 沉积学报, 34(3): 555-562. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603013.htm
      李智高, 丁琳, 李小平, 等, 2022. 珠江口盆地珠一坳陷西部中新世早‒中期沉积特征及控制因素. 古地理学报, 24(1): 99-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202201008.htm
      梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩‒碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174
      刘安, 吴世敏, 程卫华, 等, 2011. 珠江口盆地东沙隆起的沉降史及其动力机制. 海洋学报, 33(6): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201106015.htm
      栾锡武, 彭学超, 王英民, 等, 2010. 南海北部陆架海底沙波基本特征及属性. 地质学报, 84(2): 209-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002009.htm
      米立军, 张向涛, 丁琳, 等, 2018. 海上成熟探区中浅层岩性油气藏分布特点与勘探策略. 中国石油勘探, 23(6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201806002.htm
      邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
      邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变. 沉积学报, 26(2): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200802002.htm
      吴静, 丁琳, 张晓钊, 等, 2022. 珠江口盆地恩平凹陷海相三角洲岩性圈闭勘探的关键技术. 长江大学学报(自然科学版), 19(1): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL202201005.htm
      吴静, 张晓钊, 白海军, 等, 2021. 珠江口盆地阳江凹陷中新统潮控体系及其岩性圈闭勘探意义. 地球科学, 46(10): 3673-3689. doi: 10.3799/dqkx.2021.017
      吴时国, 刘展, 王万银, 等, 2004. 东沙群岛海区晚新生代构造特征及其对弧‒陆碰撞的响应. 海洋与湖沼, 35(6): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ200406000.htm
      向绪洪, 邵磊, 乔培军, 等, 2011. 珠江流域沉积物重矿物特征及其示踪意义. 海洋地质与第四纪地质, 31(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201106005.htm
      张向涛, 李小平, 玄昌姬, 等, 2021. 南海东部浅水区非烃源岩层系岩性油藏勘探实践与方向. 石油学报, 42(6): 695-707. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202106001.htm
      赵梦, 邵磊, 乔培军, 等, 2015. 珠江沉积物碎屑锆石U-Pb年龄特征及其物源示踪意义. 同济大学学报(自然科学版), 43(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506018.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (1277) PDF downloads(131) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return