• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Yu Bo, Chang Ming, Ni Zhang, Sun Wenjing, Xu Hengzhi, 2023. Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network. Earth Science, 48(5): 1825-1835. doi: 10.3799/dqkx.2022.392
    Citation: Yu Bo, Chang Ming, Ni Zhang, Sun Wenjing, Xu Hengzhi, 2023. Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network. Earth Science, 48(5): 1825-1835. doi: 10.3799/dqkx.2022.392

    Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network

    doi: 10.3799/dqkx.2022.392
    • Received Date: 2022-07-13
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • The northeastern part of Afghanistan is a typical cold and arid region where landslide geological hazards are developed. The landslide development is not only affected by topography, geological structure, human activities, and other factors, but also is controlled by snow cover, snow, and ice melt. In this paper, based on the primary data of remote sensing interpretation, considering the influence of snow cover and glacier activity on landslide development, two evaluation indexes of snow cover and ablation water equivalent were introduced to study the landslide risk in the cold and dry areas of the plateau. The landslide susceptibility evaluation system was established based on the weight of evidence and a fully connected neural network model. Degree-day model and SCS-CN model established the landslide risk evaluation system, and the evaluation model was tested according to the confusion matrix. The hazard assessment results show that the extremely high-risk area accounts for 10.46% of the total area, and the disaster area accounts for 82.71%, mainly distributed in the Kunar-Chitral reach in the east of Nuristan Province, the middle and eastern high mountains of Badakhshan Province except for Wakhan corridor section, and the Helmand Reach in Parwan Province. The high-risk area accounts for 14.83% of the total area, and the disaster area accounts for 12.11%, mainly distributed in the eastern region of Badakhshan Province, the western region of Nuristan Province, and Parwan Province. The test results and statistical results all show that the accuracy of the neural network is significantly improved by taking negative samples with a weight of evidence method. The research results can provide the scientific basis for Afghanistan's early warning and prevention of landslide geological disasters.

       

    • Caniani, D., Pascale, S., Sdao, F., et al., 2008. Neural Networks and Landslide Susceptibility: A Case Study of the Urban Area of Potenza. Natural Hazards, 45(1): 55-72. https://doi.org/10.1007/s11069⁃007⁃9169⁃3
      Chang, M., Cui, P., Dou, X. Y., et al., 2021. Quantitative Risk Assessment of Landslides over the China⁃Pakistan Economic Corridor. International Journal of Disaster Risk Reduction, 63: 102441. https://doi.org/10.1016/j.ijdrr.2021.102441
      Fu, S. H., Wang, X. L., Wang, H. Y., et al., 2012. Meathod of Determining CN Value in the SCS⁃CN Method. Arid Land Geography, 35(3): 415-421 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHDL201203013.htm
      Gent, C. R., Sheppard, C. P., 1992. Special Feature. Predicting Time Series by a Fully Connected Neural Network Trained by Back Propagation. Control & Automation, 3(3): 109-112.
      Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE⁃BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
      Huang, R. Q., Xiang, X. Q., Ju, N. P., 2004. Assessment of China's Regional Geohazards: Present Situation and Problems. Geological Bulletin of China, 23(11): 1078-1082 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2004.11.005
      Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan⁃Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
      Huang, Y. D., Xu, C., Zhang, X. L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin, Tibet Mw6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32(5): 1069-1078. https://doi.org/10.1007/s12583⁃021⁃1433⁃z
      Le, J., Qu, C. H., Li, H. S., 2019. Status Quo of Agricultural Development in Afghanistan and China⁃Afghanistan Agricultural Cooperation Strategy. Agricultural Outlook, 15(5): 113-117 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-3908.2019.05.023
      Li, B. Y., Pan, B. T., 2002. Progress in Paleogeographic Study of the Tibetan Plateau. Geographical Research, 21(1): 61-70 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0585.2002.01.008
      Liu, J., Wu, Z., 2020. Landslide Risk Assessment of the Zhouqu⁃Wudu Section of Bailong River Basin Based on Geographic Information System. China Earthquake Engineering Journal, 42(6): 1723-1734 (in Chinese with English abstract).
      Liu, J. P., Zhang, W. C., 2018. Spatial Variability in Degree⁃Day Factors in Yarlung Zangbo River Basin in China. Journal of University of Chinese Academy of Sciences, 35(5): 704-711 (in Chinese with English abstract). http://www.researchgate.net/publication/337338025_Spatial_variability_in_degree-day_factors_in_Yarlung_Zangbo_River_Basin_in_China/download
      Liu, W. C., Zhang, Y., Liang, Y. W., et al., 2022. Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest. Remote Sensing, 14(9): 2131. https://doi.org/10.3390/rs14092131
      Liu, Y., Tang, C., Feng, Y., 2013. Geological Disaster Risk Assessment Based on AHP Information Method. Earth and Environment, 41(2): 173-179 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201302014.htm
      Maher, I. S., Biswajeet, P., Saro, L., 2020. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. Catena, 186(C): 104249. https://doi.org/10.1016/j.catena.2019.104249
      Nandi, A., Shakoor, A., 2008. Application of Logistic Regression Model for Slope Instability Prediction in Cuyahoga River Watershed, Ohio, USA. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2(1): 16-27. https://doi.org/10.1080/17499510701842221
      Pellicani, R., Argentiero, I., Spilotro, G., 2017. GIS⁃Based Predictive Models for Regional⁃Scale Landslide Susceptibility Assessment and Risk Mapping along Road Corridors. Geomatics, Natural Hazards and Risk, 8(2): 1012-1033. https://doi.org/10.1080/19475705.2017.1292411
      Pellicciotti, F., Brock, B., Strasser, U., et al., 2005. An Enhanced Temperature⁃Index Glacier Melt Model Including the Shortwave Radiation Balance: Development and Testing for Haut Glacier d'Arolla, Switzerland. Journal of Glaciology, 51(175): 573-587. https://doi.org/10.3189/172756505781829124
      Petpongpan, C. C., Ekkawatpanit, C., Kositgittiwong, D., 2021. Landslide Risk Assessment Using Hydrological Model in the Upper Yom River Basin, Thailand. Catena, 204: 105402. https://doi.org/10.1016/j.catena.2021.105402
      Psomiadis, E., Soulis, K. X., Efthimiou, N., 2020. Using SCS⁃CN and Earth Observation for the Comparative Assessment of the Hydrological Effect of Gradual and Abrupt Spatiotemporal Land Cover Changes. Water, 12(5): 1386. https://doi.org/10.3390/w12051386
      Regine, H., 2005. Glacier Melt: A Review of Processes and Their Modelling. Progress in Physical Geography, 29(3): 362-391. https://doi.org/10.1191/0309133305pp453ra
      Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall⁃Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science, 35(2): 317-323 (in Chinese with English abstract).
      Tang, C., Zhu, J., Zhang, X. R., 2001. GIS Based Earthquake Triggered Landslide Hazard Prediction. Journal of Seismoloical Research, 24(1): 73-81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ200101011.htm
      Wang, D., Hao, M. M., Chen, S., et al., 2021. Assessment of Landslide Susceptibility and Risk Factors in China. Natural Hazards, 108(3): 3045-3059. https://doi.org/10.1007/s11069⁃021⁃04812⁃8
      Wang, Y. Y., 2015. Recent Disasters around the World. Overview of Disaster Prevention, (2): 90-95 (in Chinese).
      Wu, L. S., 2016. Geological Structure and Mineral Resources in Afghanistan (1). Mineral Deposits, 35(1): 203-208 (in Chinese).
      Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
      Xiang, X. Q., Huang, R. Q., 2000. Application of GIS⁃Based Artificial Neural Networks on Assessment of Geohazards Risk. The Chinese Journal of Geological Hazard and Control, 11(3): 23-27 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZGDH200003005&dbcode=CJFD&year=2000&dflag=pdfdown
      Xu, Q., Huang, R. Q., Xiang, X. Q., 2000. Time and Spacial Predicting of Geological Hazards Occurrence. Journal of Mountain Science, 18(S1): 112-117 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA2000S1024.htm
      Yu, H., Lu, Z., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. Catena, 165: 520-529. https://doi.org/10.1016/j.catena.2018.03.003
      Zhang, J., Yin, K. L., Wang, J. J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201602010.htm
      Zhou, C., Chang, M., Xu, L., et al., 2020. Risk Assessment of Typical Urban Mine Geological Disasters in Guizhou Province. Geomatics and Information Science of Wuhan University, 45(11): 1782-1791 (in Chinese with English abstract).
      符素华, 王向亮, 王红叶, 等, 2012. SCS⁃CN径流模型中CN值确定方法研究. 干旱区地理, 35(3): 415-421. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201203013.htm
      郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE⁃BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      黄润秋, 向喜琼, 巨能攀, 2004. 我国区域地质灾害评价的现状及问题. 地质通报, 23(11): 1078-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200411004.htm
      黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030. doi: 10.3799/dqkx.2021.243
      乐姣, 曲春红, 李辉尚, 2019. 阿富汗农业发展现状及中阿农业合作策略. 农业展望, 15(5): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZW201905024.htm
      李炳元, 潘保田, 2002. 青藏高原古地理环境研究. 地理研究, 21(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200201007.htm
      刘杰, 武震, 2020. 基于GIS的白龙江流域舟曲‒武都段的滑坡危险性评价. 地震工程学报, 42(6): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202006049.htm
      刘金平, 张万昌, 2018. 雅鲁藏布江流域度日因子空间变化(英文). 中国科学院大学学报, 35(5): 704-711. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201805018.htm
      刘洋, 唐川, 冯毅, 2013. 基于AHP⁃信息量法的地质灾害危险性评价. 地球与环境, 41(2): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201302014.htm
      唐川, 齐信, 丁军, 等, 2010. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析. 地球科学, 35(2): 317-323. doi: 10.3799/dqkx.2010.033
      唐川, 朱静, 张翔瑞, 2001. GIS支持下的地震诱发滑坡危险区预测研究. 地震研究, 24(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200101011.htm
      王一媛, 2015. 全球近期灾害录. 防灾博览, (2): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-FZBL202106015.htm
      吴良士, 2016. 阿富汗地质构造及其矿产资源(一). 矿床地质, 35(1): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201604016.htm
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      向喜琼, 黄润秋, 2000. 基于GIS的人工神经网络模型在地质灾害危险性区划中的应用. 中国地质灾害与防治学报, 11(3): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200003005.htm
      许强, 黄润秋, 向喜琼, 2000. 地质灾害发生时间和空间的预测预报. 山地学报, 18(S1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA2000S1024.htm
      张俊, 殷坤龙, 王佳佳, 等, 2016. 三峡库区万州区滑坡灾害易发性评价研究. 岩石力学与工程学报, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602010.htm
      周超, 常鸣, 徐璐, 等, 2020. 贵州省典型城镇矿山地质灾害风险评价. 武汉大学学报(信息科学版), 45(11): 1782-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(5)

      Article views (830) PDF downloads(60) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return