• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 4
    Apr.  2023
    Turn off MathJax
    Article Contents
    Huang Shaoying, Xie Huiwen, Hou Guiting, Yang Xianzhang, Luo Caiming, Zhang Hao, Zhong Ziqi, Xia Jinkai, Li Xiang, Chang Haining, 2023. Key Transition of Chinese Plate Configuration at the End of Early Paleozoic. Earth Science, 48(4): 1321-1329. doi: 10.3799/dqkx.2022.394
    Citation: Huang Shaoying, Xie Huiwen, Hou Guiting, Yang Xianzhang, Luo Caiming, Zhang Hao, Zhong Ziqi, Xia Jinkai, Li Xiang, Chang Haining, 2023. Key Transition of Chinese Plate Configuration at the End of Early Paleozoic. Earth Science, 48(4): 1321-1329. doi: 10.3799/dqkx.2022.394

    Key Transition of Chinese Plate Configuration at the End of Early Paleozoic

    doi: 10.3799/dqkx.2022.394
    • Received Date: 2022-05-18
    • Publish Date: 2023-04-25
    • The plate configuration is the basic geological question in the tectonics, which considers the large scale basin-orogen relationship, and controls the configuration of oceans and continents, origin and evolution of basin-range provinces, and has also been applied to uncover the close of ocean and uplift of mountains. The end of Early Paleozoic is the key transition period of Chinese three plates. Based on the global high coefficient paleomagnetic data and tectonic comparison in geological affiliation, the global configuration in the Late Precambrian to Early Paleozoic is reconstructed by GPlate software, the Ordovician-Silurian is the key transition period of Chinese three plates. Before 440 Ma, the configuration of Chinese three plates is N-S/T style(North China lies in the west, South China lies in the northeast, Tarim lies in the southeast). After 440 Ma, the configuration is transformed into a T-N/S style (Tarim lies in the west, North China lies in the northeast, South China lies in the southeast) that maintains. The key transition is related to the breakup of the Late Precambrian Rodinian supercontinent and the change of ocean-continent configuration of Chinese three plates in the Early Paleozoic, the transition is from extension to compression in tectonic setting.

       

    • loading
    • Blakey, R. C., 2008. Gondwana Paleogeography from Assembly to Breakup—A 500 M. y. Odyssey. Special Paper 441: Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, 1-28. https://doi.org/10.1130/2008.2441(01)
      Chen, H. L., Lin, X. B., Cheng, X. G., et al., 2019. The Late Neoproterozoic Sedimentary Sequences in the Yutang Section Southwest Tarim Basin and Their Tectonic Implications and Hydrocarbon Perspective: Insight from Basinology. Precambrian Research, 333: 105432. https://doi.org/10.1016/j.precamres.2019.105432
      Chen, Y., Xu, B., Zhan, S., et al., 2004. First Mid-Neoproterozoic Paleomagnetic Results from the Tarim Basin (NW China) and Their Geodynamic Implications. Precambrian Research, 133(3/4): 271-281. https://doi.org/10.1016/j.precamres.2004.05.002
      Chen, Y.Q., Yan, W., Han, C.W., et al., 2015. Redefinition on Structural Paleogeography and Lithofacies Paleogeography Framework from Cambrian to Early Ordovician in the Tarim Basin: A New Approach Based on Seismic Stratigraphy Evidence. Natural Gas Geoscience, 26(10): 1831-1843(in Chinese with English abstract).
      DeMets, C., Gordon, R. G., Argus, D. F., et al., 1994. Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters, 21(20): 2191-2194. https://doi.org/10.1029/94gl02118
      Fang, A.M., Li, J.L., Chu, Z.Y., 2010. Sm-Nd Isotopic Ages of Basic Rocks in Kudi Ophiolite of West Kunlun. Chinese Journal of Geology (Scientia Geologica Sinica), 45(1): 113-121(in Chinese with English abstract).
      Gao, H.H., He, D.F., Tong, X.G., et al., 2016. Tectonic-Depositional Environment and Proto-Type Basins during the Depositional Period of Middle Ordovician Yijianfang Formation in Tarim Basin. Journal of Palaeogeography, 18(6): 986-1001(in Chinese with English abstract).
      Guo, R.Q., Qin, Q., Muhetaer, Z., et al., 2013. Geological Characteristics and Tectonic Significance of Ordovician Granite Intrusions in the Western Segment of Quruqtagh, Xinjiang. Earth Science Frontiers, 20(4): 251-263(in Chinese with English abstract).
      Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev.2017.09.012
      Hou, G. T., Santosh, M., Qian, X. L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010
      Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth-Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004
      Huang, B.C., Zhou, Y.X., Zhu, R.X., 2008. Discussions on Phanerozoic Evolution and Formation of Continental China, Based on Paleomagnetic Studies. Earth Science Frontiers, 15(3): 348-359(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.03.031
      Li, S. Z., Li, X. Y., Wang, G. Z., et al., 2019. Global Meso-Neoproterozoic Plate Reconstruction and Formation Mechanism for Precambrian Basins: Constraints from Three Cratons in China. Earth-Science Reviews, 198: 102946. https://doi.org/10.1016/j.earscirev.2019.102946
      Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37-75. https://doi.org/10.1016/j.earscirev.2017.01.011
      Li, S.B., Chen, B.L., Chen, Z.L., et al., 2013. Geochemistry and Tectonic Implications of the Early Paleozoic Felsic to Intermediate Volcanic Rocks from Kaladawan Area, North Altyn. Geological Review, 59(3): 423-436(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2013.03.003
      Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831(in Chinese with English abstract).
      Li, Y. L., Xiao, W. J., Zheng, J. P., et al., 2022. Northward Subduction of the South Qilian Ocean: Insights from Early Paleozoic Magmatism in the South-Central Qilian Belts. Geosystems and Geoenvironment, 1(1): 100013. https://doi.org/10.1016/j.geogeo.2021.100013
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1/2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Scotese, C. R., 1997. Paleogeographic Atlas. PALEOMAP Progress Report 90-0497, Department of Geology, University of Texas at Arlington, Texas, P45.
      Wang, H.H., Li, J.H., Yang, J.Y., et al., 2013. Paleo-Plate Reconstruction and Drift Path of Tarim Block from Neoproterozic to Early Palaeozoic. Advances in Earth Science, 28(6): 637-647(in Chinese with English abstract).
      Wen, B., Evans, D. A. D., Li, Y. X., 2017. Neoproterozoic Paleogeography of the Tarim Block: An Extended or Alternative "Missing-Link" Model for Rodinia? Earth and Planetary Science Letters, 458: 92-106. https://doi.org/10.1016/j.epsl.2016.10.030
      Yang, F. L., Zhou, X. F., Hu, Y. Y., et al., 2022a. Neoproterozoic Extensional Basins and Its Control on the Distribution of Hydrocarbon Source Rocks in the Yangtze Craton, South China. Geosystems and Geoenvironment, 1(1): 100015. https://doi.org/10.1016/j.geogeo.2021.100015
      Yang, G. X., Li, Y. J., Tong, L. L., et al., 2022b. Natural Observations of Subduction Initiation: Implications for the Geodynamic Evolution of the Paleo-Asian Ocean. Geosystems and Geoenvironment, 1(1): 100009. https://doi.org/10.1016/j.geogeo.2021.10.004
      Young, A., Flament, N., Maloney, K., et al., 2019. Global Kinematics of Tectonic Plates and Subduction Zones since the Late Paleozoic Era. Geoscience Frontiers, 10(3): 989-1013. https://doi.org/10.1016/j.gsf.2018.05.011
      Zhan, S., Chen, Y., Xu, B., et al., 2007. Late Neoproterozoic Paleomagnetic Results from the Sugetbrak Formation of the Aksu Area, Tarim Basin (NW China) and Their Implications to Paleogeographic Reconstructions and the Snowball Earth Hypothesis. Precambrian Research, 154(3/4): 143-158. https://doi.org/10.1016/j.precamres.2007.01.001
      Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. https://doi.org/10.1016/j.jseaes.2009.02.003
      Zhang, C. L., Ye, X. T., Ernst, R. E., et al., 2019. Revisiting the Precambrian Evolution of the Southwestern Tarim Terrane: Implications for Its Role in Precambrian Supercontinents. Precambrian Research, 324: 18-31. https://doi.org/10.1016/j.precamres.2019.01.018
      Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315. https://doi.org/10.1016/j.gr.2012.05.009
      Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015. Subduction, Accretion and Closure of Proto-Tethyan Ocean: Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System. Acta Petrologica Sinica, 31(12): 3531-3554(in Chinese with English abstract).
      Zhang, K.X., Pan, G.T., He, W.H., et al., 2015. New Division of Tectonic-Strata Superregion in China. Earth Science, 40(2): 206-233(in Chinese with English abstract).
      Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
      陈永权, 严威, 韩长伟, 等, 2015. 塔里木盆地寒武纪-早奥陶世构造古地理与岩相古地理格局再厘定: 基于地震证据的新认识. 天然气地球科学, 26(10): 1831-1843. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201510003.htm
      方爱民, 李继亮, 储著银, 2010. 西昆仑库地蛇绿岩中基性火山岩的Sm-Nd等时线年龄. 地质科学, 45(1): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001012.htm
      高华华, 何登发, 童晓光, 等, 2016. 塔里木盆地中奥陶世一间房组沉积时期构造-沉积环境与原型盆地特征. 古地理学报, 18(6): 986-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201606009.htm
      郭瑞清, 秦切, 木合塔尔·扎日, 等, 2013. 新疆库鲁克塔格西段奥陶纪花岗岩体地质特征及构造意义. 地学前缘, 20(4): 251-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304025.htm
      黄宝春, 周烑秀, 朱日祥, 2008. 从古地磁研究看中国大陆形成与演化过程. 地学前缘, 15(3): 348-359. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200803034.htm
      李松彬, 陈柏林, 陈正乐, 等, 2013. 阿尔金北缘喀腊大湾地区早古生代中酸性火山熔岩岩石地球化学特征及其构造环境. 地质论评, 59(3): 423-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201303004.htm
      李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831. doi: 10.3799/dqkx.2020.197
      王洪浩, 李江海, 杨静懿, 等, 2013. 塔里木陆块新元古代-早古生代古板块再造及漂移轨迹. 地球科学进展, 28(6): 637-647. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201306003.htm
      张建新, 于胜尧, 李云帅, 等, 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512003.htm
      张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案. 地球科学, 40(2): 206-233. doi: 10.3799/dqkx.2015.016
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (1110) PDF downloads(213) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return