• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 7
    Jul.  2023
    Turn off MathJax
    Article Contents
    Zhou Weiwei, Dong Youpu, Xiao Ancheng, Wu Lei, Mao Liguang, Li Hongge, 2023. Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag. Earth Science, 48(7): 2718-2732. doi: 10.3799/dqkx.2022.398
    Citation: Zhou Weiwei, Dong Youpu, Xiao Ancheng, Wu Lei, Mao Liguang, Li Hongge, 2023. Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag. Earth Science, 48(7): 2718-2732. doi: 10.3799/dqkx.2022.398

    Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag

    doi: 10.3799/dqkx.2022.398
    • Received Date: 2021-11-18
    • Publish Date: 2023-07-25
    • The development stage of the fault deformation zone refers to the weak deformation (strong concealment) zone developed in the sedimentary cover of the basin, which is the product of the early and middle stages of the formation and evolution of the fault zone. It is difficult to identify because of the lack of obvious fracture surface (zone) and significant displacement. It has been found that the weakly deformed tectonic belt is an objective tectonic phenomenon in the sedimentary basin cover, and is closely related to oil and gas accumulation. It can be recognized by regular arrangement of different geological units (secondary faults, oil reservoirs, traps, facies belts, depressions, rock masses, buried hills, etc.). In order to reveal the deformation intensity and hydrocarbon accumulation scale of cap cover deformation zone, the key issue of oil and gas geology, this paper takes the Dongying Sag as the research object and applies variable caprock thickness and the structural physical simulation experiment method in which variable shear strength is used to study the process of basement fault strike-slip activity on the formation of faults in the sedimentary caprock of the basin. Using SPSS software, taking the sliding amount of the basement/the thickness of the experimental cover layer (DNBD) as the independent variable x1, the amount of lateral sliding/the thickness of the experimental cover layer as the independent variable x2 (x2=x1×tanα) and the length of the echelon seam/the thickness of the experimental cover as the dependent variable y, multivariate quadratic function fitting was performed. According to the strata thickness, shear length of structural map R and experimentally estimated tensional and torsion angles by experiment in different periods of Paleogene in Bamianhe (strong strike slip) and Wangjiagang (weak strike slip) areas of Dongying Sag, the strike-slip amounts of the basement faults of Bamianhe and Wangjiagang fault zones in each period were calculated. At each stage of the simulation experiment, dyed oil was charged, and combined with the sag examples, the accumulation models of the basement faults were established, such as Early R shear single-channel migration-isolated aggregation, Early and mid-term R shear main channel migration-geese and beaded aggregation, P shear main channel migration-intermittent zonal aggregation, full channel migration-continuous belt aggregation, etc.. Finally, it is pointed out that the R shear pressurized deformation section and the R and P shear intersection section in the deformation zone are favorable target areas for oil and gas exploration.

       

    • loading
    • Atmaoui, N., Kukowski, N., Stöckhert, B., et al., 2006. Initiation and Development of Pull-Apart Basins with Riedel Shear Mechanism: Insights from Scaled Clay Experiments. International Journal of Earth Sciences, 95(2): 225-238. https://doi.org/10.1007/s00531-005-0030-1
      Bellahsen, N., Daniel, J. M., 2005. Fault Reactivation Control on Normal Fault Growth: An Experimental Study. Journal of Structural Geology, 27(4): 769-780. https://doi.org/10.1016/j.jsg.2004.12.003
      Chi, Y. L., Zhao, W. Z., 2000. Strike-Slip Deformation during the Cenozoic and Its Influence on Hydrocarbon Accumulation in the Bohai Bay Basin. Acta Petrolei Sinica, 21(2): 14-20 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2000.02.003
      Coelho, S., Passchier, C., Marques, F., 2006. Riedel-Shear Control on the Development of Pennant Veins: Field Example and Analogue Modelling. Journal of Structural Geology, 28(9): 1658-1669. https://doi.org/10.1016/j.jsg.2006.05.009
      Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290(1): 1-12. https://doi.org/10.1144/sp290.1
      Davis, G. H., Bump, A. P., Garcı́a, P. E., et al., 2000. Conjugate Riedel Deformation Band Shear Zones. Journal of Structural Geology, 22(2): 169-190. https://doi.org/10.1016/s0191-8141(99)00140-6
      Di, L. J., 2006. Controlling of Petrophysical Fractures on Extra-Low Permeability Oil and Gas Reservoirs in Ordos Basin. Petroleum Exploration and Development, 33(6): 667-670 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2006.06.005
      Dooley, T. P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030
      Fredman, N., Tveranger, J., Cardozo, N., et al., 2008. Fault Facies Modeling: Technique and Approach for 3-D Conditioning and Modeling of Faulted Grids. AAPG Bulletin, 92(11): 1457-1478. https://doi.org/10.1306/06090807073
      Fu, G., Wang, Y. P., 2018. Controlling Factors of Hydrocarbon Enrichment with the Type of "below Source and Upper Reservoir" in Fault Concentrated Zones and Nearby. Lithologic Reservoirs, 30(2): 23-29 (in Chinese with English abstract).
      Fu, X. F., Fang, D. Q., Lü, Y. F., et al., 2005. Method of Evaluating Vertical Sealing of Faults in Terms of the Internal Structure of Fault Zones. Earth Science, 30(3): 328-336 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2005.03.008
      Fusseis, F., Xiao, X., Schrank, C., et al., 2014. A Brief Guide to Synchrotron Radiation-Based Microtomography in (Structural) Geology and Rock Mechanics. Journal of Structural Geology, 65: 1-16. https://doi.org/10.1016/j.jsg.2014.02.005
      Ghosh, N., Chattopadhyay, A., 2008. The Initiation and Linkage of Surface Fractures above a Buried Strike-Slip Fault: an Experimental Approach. Journal of Earth System Science, 117(1): 23-32. https://doi.org/10.1007/s12040-008-0009-y
      Hardy, S., 2011. Cover Deformation above Steep, Basement Normal Faults: Insights from 2D Discrete Element Modeling. Marine and Petroleum Geology, 28(5): 966-972. https://doi.org/10.1016/j.marpetgeo.2010.11.005
      Hu, J. S., Sui, Z. Q., Liu, C. Z., 2009. Geologic Origin of Gravity Anomaly in Southern Dongying Depression. Petroleum Geology and Recovery Efficiency, 16(2): 39-42, 113 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2009.02.012
      Hu, S. Y., Yu, Y. J., Dong, D. Z., et al., 2006. Control of Fault Activity on Hydrocarbon Accumulation in Central Junggar Basin. Acta Petrolei Sinica, 27(1): 1-7 (in Chinese with English abstract). doi: 10.1111/j.1745-7254.2006.00255.x
      Jiang, M. M., Fu, X. F., Shi, L., et al., 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5): 1805-1818 (in Chinese with English abstract).
      Jiang, Y. L., Liu, H., Zhang, L., et al., 2005. Characteristics of Petroleum System in Dongying Depression. Acta Petrolei Sinica, 26(5): 33-37 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2005.05.007
      Jiang, Y. L., Zhai, Q. L., Rong, Q. H., et al., 2003. Main Factors for Controlling Hydrocarbon Accumulation in South-West Part of Dongying Depression. Journal of the University of Petroleum, China, 27(4): 11-14, 36 (in Chinese with English abstract).
      Le Guerroué, E., Cobbold, P. R., 2006. Influence of Erosion and Sedimentation on Strike-Slip Fault Systems: Insights from Analogue Models. Journal of Structural Geology, 28(3): 421-430. https://doi.org/10.1016/j.jsg.2005.11.007
      Li, H. Y., Niu, C. M., Xu, P., et al., 2021. Discovery of Bozhong 13-2 Archean Large Monoblock Volatile Buried Hill Oilfield and Its Oil and Gas Exploration Significance. Natural Gas Industry, 41(2): 19-26 (in Chinese with English abstract).
      Liu, H., Jiang, Y. L., Ren, J. L., 2009. Characteristics of Petroleum System and Oil-Source in Dongying Depression. Geological Journal of China Universities, 15(1): 93-99 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2009.01.009
      Lu, K. Z., Qi, J. F., Dai, J. S., et al., 1997. Tectonic Model of Cenozoic Oil-Bearing Basin in Bohai Bay. Geological Publishing House, Beijing (in Chinese).
      Luo, Q., 2010. Concept, Principle, Model and Significance of the Fault Controlling Hydrocarbon Theory. Petroleum Exploration and Development, 37(3): 316-324 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60035-3
      Ma, B. J., Qi, J. F., Niu, S. Y., et al., 2009. The Influence of Basement Fault on the Deformation of Complex Cover Blocks in a Uniform Stress Field—Enlightenment from Sandbox Experiment. Earth Science Frontiers, 16(4): 105-116 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.04.011
      Mollema, P. N., Antonellini, M. A., 1996. Compaction Bands: A Structural Analog for Anti-Mode Ⅰ Cracks in Aeolian Sandstone. Tectonophysics, 267(1-4): 209-228. https://doi.org/10.1016/S0040-1951(96)00098-4
      Morley, C. K., 1999. How Successful Are Analogue Models in Addressing the Influence of Pre-Existing Fabrics on Rift Structure? Journal of Structural Geology, 21(8-9): 1267-1274. https://doi.org/10.1016/S0191-8141(99)00075-9
      Qi, J. F., 2004. Two Tectonic Systems in the Cenozoic Bohai Bay Basin and Their Genetic Interpretation. Chinese Geology, 31(1): 15-22 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2004.01.002
      Qi, J. F., Deng, R. J., Zhou, X. H., et al., 2008. Structure of Tancheng-Lujiang Fault Zone in Cenozoic Basin in Bohai Sea. Scientia Sinica Terrae, 38(S1): 19-29 (in Chinese).
      Richard, P., 1991. Experiments on Faulting in a Two-Layer Cover Sequence Overlying a Reactivated Basement Fault with Oblique-Slip. Journal of Structural Geology, 13(4): 459-469. https://doi.org/10.1016/0191-8141(91)90018-E
      Richard, P., Krantz, R. W., 1991. Experiments on Fault Reactivation in Strike-Slip Mode. Tectonophysics, 188(1-2): 117-131. https://doi.org/10.1016/0040-1951(91)90318-M
      Richard, P., Mocquet, B., Cobbold, P. R., 1991. Experiments on Simultaneous Faulting and Folding above a Basement Wrench Fault. Tectonophysics, 188(1-2): 133-141. https://doi.org/10.1016/0040-1951(91)90319-N
      Song, G. Q., Li, J. Y., Jia, G. H., et al., 2013. Structural Characteristics and Its Control on Hydrocarbon Accumulation of the Kongdian Formation in the Wangjiagang Structural Zone, Dongying Depression. Oil & Gas Geology, 34(2): 207-214 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-9829.2013.02.003
      Thomas, G. E., 1974. Lineament-Block Tectonics: Williston-Blood Creek Basin. AAPG Bulletin, 58: 1305-1322. https://doi.org/10.1306/83d9166e-16c7-11d7-8645000102c1865d
      Wang, W. F., Zhou, W. W., Shan, X. J., et al., 2015a. Characteristics of Hidden Fault Zone and Its Significance in Geology in Sedimentary Basin. Journal of Central South University (Science and Technology), 46(6): 2236-2243 (in Chinese with English abstract).
      Wang, W. F., Zhou, W. W., Liu, Y. R., 2015b. Evolution of Subtle Fault Zone and Its Control Function of Reservoirs Forming in Jinhu Sag. Chinese Journal of Geology (Scientia Geologica Sinica), 50(3): 911-925 (in Chinese with English abstract).
      Wang, Z. C., Zhao, W. Z., Li, Z. Y., et al., 2008. Role of Basement Faults in Gas Accumulation of Xujiahe Formation, Sichuan Basin. Petroleum Exploration and Development, 35(5): 541-547 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60087-2
      Xie, Y. H., 2021. Major Achievements in Oil and Gas Exploration of CNOOC in the 13th Five-Year Plan Period and Prospects in the 14th Five-Year Plan Period. China Petroleum Exploration, 26(1): 43-54 (in Chinese with English abstract).
      Xu, X. Y., Wang, W. F., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5): 1754-1768 (in Chinese with English abstract).
      Xue, Y. A., Li, H. Y., Xu, P., et al., 2021. Recognition of Oil and Gas Accumulation of Mesozoic Covered Buried Hills in Bohai Sea Area and the Discovery of BZ13-2 Oilfield. China Offshore Oil and Gas, 33(1): 13-22 (in Chinese with English abstract).
      Zhao, W. Z., Hu, S. Y., Wang, Z. C., et al., 2003. Key Role of Basement Fault Control on Oil Accumulation of Yanchang Formation, Upper Triassic, Ordos Basin. Petroleum Exploration and Development, 30(5): 1-5 (in Chinese with English abstract).
      Zhou, W. W., Wang, W. F., An, B., et al., 2014a. Genetic Types of Potential Fault Zone and Its Significance on Hydrocarbon Accumulation. Natural Gas Geoscience, 25(11): 1727-1734 (in Chinese with English abstract).
      Zhou, W. W., Wang, W. F., An, B., et al., 2014b. Identification of Potential Fault Zones and Its Geological Significance in Bohai Bay Basin. Earth Science, 39(11): 1627-1638 (in Chinese with English abstract).
      池英柳, 赵文智, 2000. 渤海湾盆地新生代走滑构造与油气聚集. 石油学报, 21(2): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200002002.htm
      邸领军, 2006. 鄂尔多斯盆地储集层物性断裂对超低渗油气藏的控制作用. 石油勘探与开发, 33(6): 667-670. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200606004.htm
      付广, 王宇鹏, 2018. 断裂密集带及附近下生上储式油气富集的控制因素. 岩性油气藏, 30(2): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201802003.htm
      付晓飞, 方德庆, 吕延防, 等, 2005. 从断裂带内部结构出发评价断层垂向封闭性的方法. 地球科学, 30(3): 328-336. http://www.earth-science.net/article/id/1414
      胡加山, 隋志强, 刘成斋, 2009. 东营凹陷南部重力异常地质成因. 油气地质与采收率, 16(2): 39-42, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200902014.htm
      胡素云, 蔚远江, 董大忠, 等, 2006. 准噶尔盆地腹部断裂活动对油气聚集的控制作用. 石油学报, 27(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200601000.htm
      姜明明, 付晓飞, 石磊, 等, 2022. 高孔砂岩断层内部微观结构及渗透性变化规律物理模拟. 地球科学, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113
      蒋有录, 刘华, 张乐, 等, 2005. 东营凹陷含油气系统的划分及评价. 石油学报, 26(5): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200505006.htm
      蒋有录, 翟庆龙, 荣启宏, 等, 2003. 东营凹陷博兴地区油气富集的主要控制因素. 石油大学学报(自然科学版), 27(4): 11-14, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200304002.htm
      李慧勇, 牛成民, 许鹏, 等, 2021. 渤中13-2大型整装覆盖型潜山油气田的发现及其油气勘探意义. 天然气工业, 41(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102005.htm
      刘华, 蒋有录, 任景伦, 2009. 东营凹陷油‒源特征与含油气系统划分. 高校地质学报, 15(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200901009.htm
      陆克政, 漆家福, 戴俊生, 等, 1997. 渤海湾新生代含油气盆地构造模式. 北京: 地质出版社.
      罗群, 2010. 断裂控烃理论的概念、原理、模式与意义. 石油勘探与开发, 37(3): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003010.htm
      马宝军, 漆家福, 牛树银, 等, 2009. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示. 地学前缘, 16(4): 105-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904013.htm
      漆家福, 2004. 渤海湾新生代盆地的两种构造系统及其成因解释. 中国地质, 31(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401001.htm
      漆家福, 邓荣敬, 周心怀, 等, 2008. 渤海海域新生代盆地中的郯庐断裂带构造. 中国科学: 地球科学, 38(S1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1003.htm
      宋国奇, 李继岩, 贾光华, 等, 2013. 东营凹陷王家岗构造带孔店组构造特征及其控藏作用. 石油与天然气地质, 34(2): 207-214. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201302013.htm
      王伟锋, 周维维, 单新建, 等, 2015a. 沉积盆地隐性断裂带特征及其地质意义. 中南大学学报(自然科学版), 46(6): 2236-2243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201506035.htm
      王伟锋, 周维维, 刘玉瑞, 2015b. 张扭性盆地隐性断裂带识别、演化及控藏作用——以苏北盆地金湖凹陷为例. 地质科学, 50(3): 911-925.
      汪泽成, 赵文智, 李宗银, 等, 2008. 基底断裂在四川盆地须家河组天然气成藏中的作用. 石油勘探与开发, 35(5): 541-547.
      谢玉洪, 2021. 中国海油"十三五"油气勘探重大成果与"十四五"前景展望. 中国石油勘探, 26(1): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202101004.htm
      徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5): 1754-1768. doi: 10.3799/dqkx.2019.175
      薛永安, 李慧勇, 许鹏, 等, 2021. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现. 中国海上油气, 33(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202101002.htm
      赵文智, 胡素云, 汪泽成, 等, 2003. 鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用. 石油勘探与开发, 30(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200305000.htm
      周维维, 王伟锋, 安邦, 等, 2014a. 渤海湾盆地隐性断裂带成因类型特征及其对油气聚集的控制作用. 天然气地球科学, 25(11): 1727-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201411007.htm
      周维维, 王伟锋, 安邦, 等, 2014b. 渤海湾盆地隐性断裂带识别及其地质意义. 地球科学, 39(11): 1627-1638. doi: 10.3799/dqkx.2014.145
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(8)

      Article views (434) PDF downloads(77) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return