• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 12
    Dec.  2022
    Turn off MathJax
    Article Contents
    Liu Wei, Sun Xinran, He Naiwu, 2022. Structural Evolution and Mechanical Response Mechanism of Loess in Strong Earthquake Area. Earth Science, 47(12): 4442-4455. doi: 10.3799/dqkx.2022.402
    Citation: Liu Wei, Sun Xinran, He Naiwu, 2022. Structural Evolution and Mechanical Response Mechanism of Loess in Strong Earthquake Area. Earth Science, 47(12): 4442-4455. doi: 10.3799/dqkx.2022.402

    Structural Evolution and Mechanical Response Mechanism of Loess in Strong Earthquake Area

    doi: 10.3799/dqkx.2022.402
    • Received Date: 2022-06-30
      Available Online: 2023-01-10
    • Publish Date: 2022-12-25
    • Loess poses a serious threat to the safety of engineering structures because of its collapsibility and deformation when it encounters water. The internal structure of loess in strong earthquake areas will change after encountering historical earthquakes, and the structural evolution is closely related to the initial water content of loess. Structural damage of loess by historical earthquakes also affects its macroscopic mechanical characteristics: In order to reveal the mechanism of the structural evolution and mechanical response of loess in strong earthquake areas, the loess samples were pre-seismically treated with dynamic loads under different PGA (peak ground acceleration) conditions via dynamic triaxial tests, so that the disturbance of historical earthquakes to loess was simulated. Afterwards, the undrained test was carried out to analyze the correlation between the shear strength parameters, the seismic load and initial water content. The test results show that when the initial moisture content is 2%, the peak strength of the loess sample with pre-seismical treatment is significantly lower than that of the sample without pre-seismical treatment, and with the increase of PGA, the peak strength decreases. The pore water pressure eventually tends to be constant with the continuous increase of the strain, the effective axial stress and the effective confining pressure decrease with the continuously increasing strain, and finally tend to be content. When the initial water content increased to 12%, the strength of the loess sample after pre-seismical treatment increased.By drawing the stress path relationship curve, the critical instability line and failure line of the loess in the strong earthquake area are determined. For the same loess samples, the increase of PGA causes the loess instability line to move down continuously, indicating that the stress state in the loess changes with the increase of the earthquake dynamic load. When the initial moisture content is 12%, the shear strength of the loess sample after pre-seismic treatment increases.

       

    • loading
    • An, L., Deng, J., Guo, P., et al., 2019. Correlation between Microscopic Parameters and Dynamic Elastic Modulus of Loess. Chinese Journal of Geotechnical Engineering, 41(Suppl. 2): 105-108(in Chinese with English abstract).
      Chen, J. B., Chen, X. W., Jing, X. J., et al., 2021. Ergodicity of Turbulence Measurements upon Complex Terrain in Loess Plateau. Scientia Sinica (Terrae), 51(2): 299-313(in Chinese). doi: 10.1360/SSTe-2020-0128
      Chen, W. W., Liu, W., Wang, J., et al., 2019. Relationship between Saturation Degree and B Value for Loess. Rock and Soil Mechanics, 40(3): 834-842(in Chinese with English abstract).
      Cheng, G. Y., 2003. Study on the Correlation between Saturated Sand Shear Wave Velocity and Liquefaction Resistance(Dissertation). Tianjin University, Tianjin(in Chinese with English abstract).
      Cui, S. H., Pei, X. J., Huang, R. Q., et al., 2020. Excess Interstitial Water Pressure within Sliding Zone Induced by Strong Seismic Shaking: An Initiation Model of the Daguangbao Landslide. Chinese Journal of Rock Mechanics and Engineering, 39(3): 522-539(in Chinese with English abstract).
      Gao, G. R., 1981. Classification of Microstructures of Loess in China and Their Collapsibility. Science in China (Ser. A), 24(7): 962-974.
      Gao, G. R., 1996. The Distribution and Geotechnical Properties of Loess Soils, Lateritic Soils and Clayey Soils in China. Engineering Geology, 42(1): 95-104. https://doi.org/10.1016/0013⁃7952(95)00056⁃9
      Jiang, M. J., Zhang, F. G., Hu, H. J., et al., 2014. Structural Characterization of Natural Loess and Remolded Loess under Triaxial Tests. Engineering Geology, 181: 249-260. https://doi.org/10.1016/j.enggeo.2014.07.021
      Liu, W., Chen, W. W., Wang, Q., et al., 2020a. Effect of Pre⁃Dynamic Loading on Static Liquefaction of Undisturbed Loess. Soil Dynamics and Earthquake Engineering, 130: 105915. https://doi.org/10.1016/j.soildyn.2019.105915
      Liu, W., Chen, W. W., Yang, F., 2021. Influence of Long⁃Term Seismic Effect on Mechanical Properties of Loess. China Earthquake Engineering Journal, 43(4): 965-976(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2021.04.965
      Liu, W., Wang, Q., Lin, G. C., et al., 2020b. Effect of Pre⁃Dynamic Loading on Dynamic Liquefaction of Undisturbed Loess. Bulletin of Earthquake Engineering, 18(13): 5779-5806. https://doi.org/10.1007/s10518⁃020⁃00917⁃w
      Ma, L. N., Qi, S. W., Guo, S. F., et al., 2022a. Investigation on the Deformation and Failure Patterns of Loess Cut Slope Based on the Unsaturated Triaxial Test in Yan'an, China. Journal of Earth Science (in press). https://doi.org/10.1007/s12583-021-1554-4
      Ma, P. H., Peng, J. B., Zhuang, J. Q., et al., 2022b. Initiation Mechanism of Loess Mudflows by Flume Experiments. Journal of Earth Science (in press). https://doi.org/10.1007/s12583-022-1660-y
      Mao, Y. D., Wang, Z. X., Pang, Z. B., 2021. Two Significant Stages in the Aridification of the Eastern Chinese Loess Plateau since 1.2 Ma. Earth Science, 46(1): 272-280(in Chinese with English abstract).
      Min, L. R., Fan, H., 1988. The Formation of the Loess Plateau in China and the Discussion on the Causes of Loess. Chinese Science Bulletin, 33(9): 690-692(in Chinese). doi: 10.1360/csb1988-33-9-690
      Ministry of Housing and Urban Rural Development of the People's Republic of China, 2016. Code for Seismic Design of Buildings GB 50011-2010. China Construction Industry Press, Beijing(in Chinese).
      Ministry of Transport of the People's Republic of China, 2011. Code for Geological Investigation of Highway Engineering JTGC20-2011. People's Communications Press, Beijing(in Chinese).
      Pei, X. J., Zhang, X. C., Guo, B., et al., 2017. Experimental Case Study of Seismically Induced Loess Liquefaction and Landslide. Engineering Geology, 223: 23-30. https://doi.org/10.1016/j.enggeo.2017.03.016
      Sun, J. Z., 2005. Loess Science (Part 1). Hong Kong Archaeological Society, Hong Kong(in Chinese).
      Sun, P., Li, R. J., Jiang, H., et al., 2017. Earthquake⁃Triggered Landslides by the 1718 Tongwei Earthquake in Gansu Province, Northwest China. Bulletin of Engineering Geology and the Environment, 76(4): 1281-1295. https://doi.org/10.1007/s10064⁃016⁃0949⁃4
      Toyota, H., Takada S., 2017. Variation of Liquefaction Strength Induced by Monotonic and Cyclic Loading Histories. Journal of Geotechnical and Geoenvironmental Engineering, 143(4): 04016120. https://doi.org/10.1061/(asce)gt.1943⁃5606.0001634
      Wang, J. D., Xu, Y. J., Zhang, D. F., et al. 2021. Study on the Effect of Loess Vibration on Permeability. Scientia Sinica (Terrae), 51(5): 763-782(in Chinese). doi: 10.1360/SSTe-2020-0293
      Wang, Q., Wang, P., Wang, J., et al., 2015. Effect of Microstructure Properties on of Dynamic Residual Deformation Behavior of Saturated Loess. Chinese Journal of Geotechnical Engineering, 37(Suppl. 2): 143-147(in Chinese with English abstract).
      Wang, S. Y., Luna, R., Onyejekwe, S., 2016. Effect of Initial Consolidation Condition on Postcyclic Undrained Monotonic Shear Behavior of Mississippi River Valley Silt. Journal of Geotechnical and Geoenvironmental Engineering, 142(2): 04015075. https://doi.org/10.1061/(asce)gt.1943⁃5606.0001401
      Wang, S. Y., Luna, R., Onyejekwe, S., 2015a. Postliquefaction Behavior of Low⁃Plasticity Silt at Various Degrees of Reconsolidation. Soil Dynamics and Earthquake Engineering, 75: 259-264. https://doi.org/10.1016/j.soildyn.2015.04.014
      Wang, S. Y., Luna, R., Zhao, H. H., 2015b. Cyclic and Post⁃Cyclic Shear Behavior of Low⁃Plasticity Silt with Varying Clay Content. Soil Dynamics and Earthquake Engineering, 75: 112-120. https://doi.org/10.1016/j.soildyn.2015.03.015
      Wang, S. Y., Luna, R., Yang, J. S., 2013. Postcyclic Behavior of Low⁃Plasticity Silt with Limited Excess Pore Pressures. Soil Dynamics and Earthquake Engineering, 54: 39-46. https://doi.org/10.1016/j.soildyn.2013.07.016
      Wu, Z. J., Zhang, D., Wang, S. N., et al., 2020. Dynamic⁃Response Characteristics and Deformation Evolution of Loess Slopes under Seismic Loads. Engineering Geology, 267: 105507. https://doi.org/10.1016/j.enggeo.2020.105507
      Xie, D. Y., Qi, J. L., Zhu, Y. L., 1999. Soil Structure Parameter and Its Relations to Deformation and Strength. Journal of Hydraulic Engineering, 30(10): 1-6(in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.1999.10.001
      Yasuda, S., Harada, K., Ishikawa, K., et al., 2012. Characteristics of Liquefaction in Tokyo Bay Area by the 2011 Great East Japan Earthquake. Soils and Foundations, 52(5): 793-810. https://doi.org/10.1016/j.sandf.2012.11.004
      Yasuda, S., Tohno, I., 1988. Sites of Reliquefaction Caused by the 1983 Nihonkai⁃Chubu Earthquake. Soils and Foundations, 28(2): 61-72. https://doi.org/10.3208/sandf1972.28.2_61
      Zhang, Y., 2019. Study on the Evolution of Loess Structure and Its Constitutive Model in Acidic Environment (Dissertation). Xi'an University of Technology, Xi'an(in Chinese with English abstract).
      Zhu, Z. Y., 1992. Neotectonics and Neotectonic Movement of the Loess Plateau and Its Adjacent Regions. Quaternary Sciences, 12(3): 252-264(in Chinese with English abstract).
      Zhuang, J. Q., Peng, J. B., Xu, C., et al., 2018. Distribution and Characteristics of Loess Landslides Triggered by the 1920 Haiyuan Earthquake, Northwest of China. Geomorphology, 314: 1-12. https://doi.org/10.1016/j.geomorph.2018.04.012
      Zhuang, Y., Xing, A. G., Cheng, Q. G., et al., 2020. Characteristics and Numerical Modeling of a Catastrophic Loess Flow Slide Triggered by the 2013 Minxian-Zhangxian Earthquake in Yongguang Village, Minxian, Gansu, China. Bulletin of Engineering Geology and the Environment, 79(1): 439-449. https://doi.org/10.1007/s10064⁃019⁃01542⁃x
      安亮, 邓津, 郭鹏, 等, 2019. 黄土微观参数指标与动弹性模量关联度研究. 岩土工程学报, 41(增刊2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2028.htm
      陈晋北, 陈霄文, 荆肖军, 等, 2021. 黄土高原复杂地形条件下湍流观测的各态历经性检验. 中国科学: 地球科学, 51(2): 299-313. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202102009.htm
      谌文武, 刘伟, 王娟, 等, 2019. 黄土饱和度与B值关系试验研究. 岩土力学, 40(3): 834-842. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903002.htm
      程国勇, 2003. 饱和砂土剪切波速与抗液化强度相关性的研究(博士学位论文). 天津: 天津大学.
      崔圣华, 裴向军, 黄润秋, 等, 2020. 强震过程滑带超间隙水压力效应研究: 大光包滑坡启动机制. 岩石力学与工程学报, 39(3): 522-539. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003008.htm
      刘伟, 谌文武, 杨芳, 2021. 地震长期效应对黄土力学性质的影响. 地震工程学报, 43(4): 965-976. doi: 10.3969/j.issn.1000-0844.2021.04.965
      毛永栋, 王治祥, 庞志斌, 2021. 黄土高原东部(山西阳曲)1.2 Ma以来黄土记录的两次显著干旱化事件. 地球科学, 46(1): 272-280. doi: 10.3799/dqkx.2019.278
      闵隆瑞, 范蕙, 1988. 中国黄土高原的形成及其黄土成因的探讨. 科学通报, 33(9): 690-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198809014.htm
      孙建中, 2005. 黄土学(上篇). 香港: 香港考古学会.
      王家鼎, 许元珺, 张登飞, 等, 2021. 黄土振动促渗效应研究. 中国科学: 地球科学, 51(5): 763-782. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202105010.htm
      王谦, 王平, 王峻, 等, 2015. 微结构特性对饱和黄土动残余变形的影响研究. 岩土工程学报, 37(增刊2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2029.htm
      谢定义, 齐吉琳, 朱元林, 1999. 土的结构性参数及其与变形强度的关系. 水利学报, 30(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199910000.htm
      张耀, 2019. 酸性环境下黄土结构的演变及其本构模型研究(博士学位论文). 西安: 西安理工大学.
      中华人民共和国住房和城乡建设部, 2016. 《建筑抗震设计规范》, GB 50011-2010. 北京: 中国建筑工业出版社.
      中华人民共和国交通运输部, 2011. 《公路工程地质勘察规范》, JTGC20-2011. 北京: 人民交通出版社.
      朱照宇, 1992. 黄土高原及邻区新构造与新构造运动. 第四纪研究, 12(3): 252-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199203006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(11)

      Article views (636) PDF downloads(47) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return