Citation: | Wang Zijun, Yao Wenqian, Liu-Zeng Jing, Shao Yanxiu, Wang Wenxin, Shen Xuwen, Gao Yunpeng, Xu Jing, 2024. Application of Tectonic Geomorphology Method for Constraining the Slip Rate Uncertainty and Implication of Strike-Slip Faults: An Example from the Haiyuan Fault Zone. Earth Science, 49(2): 759-780. doi: 10.3799/dqkx.2022.405 |
Acharya, H. K., 1997. Influence of Fault Bends on Ruptures. Bulletin of the Seismological Society of America, 87(6): 1691-1696. https://doi.org/10.1785/bssa0870061691
|
Arrowsmith, J. R., Zielke, O., 2009. Tectonic Geomorphology of the San Andreas Fault Zone from High Resolution Topography: An Example from the Cholame Segment. Geomorphology, 113(1/2): 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002
|
Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895-898. https://doi.org/10.1029/93gl00128
|
Bennett, R. A., Friedrich, A. M., Furlong, K. P., 2004. Codependent Histories of the San Andreas and San Jacinto Fault Zones from Inversion of Fault Displacement Rates. Geology, 32(11): 961. https://doi.org/10.1130/g20806.1
|
Bergen, K. J., Shaw, J. H., Leon, L. A., et al., 2017. Accelerating Slip Rates on the Puente Hills Blind Thrust Fault System beneath Metropolitan Los Angeles, California, USA. Geology, 45(3): 227-230. https://doi.org/10.1130/g38520.1
|
Berryman, K., 1990. Late Quaternary Movement on the Wellington Fault in the Upper Hutt Area, New Zealand. New Zealand Journal of Geology and Geophysics, 33(2): 257-270. https://doi.org/10.1080/00288306.1990.10425683
|
Biasi, G. P., Wesnousky, S. G., 2017. Bends and Ends of Surface Ruptures. Bulletin of the Seismological Society of America, 107(6): 2543-2560. https://doi.org/10.1785/0120160292
|
Bird, P., 2009. Long‐term Fault Slip Rates, Distributed Deformation Rates, and Forecast of Seismicity in the Western United States from Joint Fitting of Community Geologic, Geodetic, and Stress Direction Data Sets. Journal of Geophysical Research: Solid Earth, 114(B11): 403. https://doi.org/10.1029/2009jb006317
|
Blisniuk, K., Oskin, M., Mériaux, A. S., et al., 2013. Stable, Rapid Rate of Slip since Inception of the San Jacinto Fault, California. Geophysical Research Letters, 40(16): 4209-4213. https://doi.org/10.1002/grl.50819
|
Burchfiel, B. C., Zhang, P. Z., Wang, Y. P., et al., 1991. Geology of the Haiyuan Fault Zone, Ningxia‐Hui Autonomous Region, China, and its Relation to the Evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics, 10(6): 1091-1110. https://doi.org/10.1029/90tc02685
|
Burgette, R. J., Hanson, A. M., Scharer, K. M., et al., 2020. Late Quaternary Slip Rate of the Central Sierra Madre Fault, Southern California: Implications for Slip Partitioning and Earthquake Hazard. Earth and Planetary Science Letters, 530(1): 115907. https://doi.org/10.1016/j.epsl.2019.115907
|
Carne, R., Little, T., Rieser, U., 2011. Using Displaced River Terraces to Determine Late Quaternary Slip Rate for the Central Wairarapa Fault at Waiohine River, New Zealand. New Zealand Journal of Geology and Geophysics, 54(2): 217-236. https://doi.org/10.1080/00288306.2010.532224
|
Cavalié, O., Lasserre, C., Doin, M. P., et al., 2008. Measurement of Interseismic Strain Across the Haiyuan Fault (Gansu, China), by InSAR. Earth and Planetary Science Letters, 275(3/4): 246-257. https://doi.org/10.1016/j.epsl.2008.07.057
|
Chen, T., Liu, Z. J., Shao, Y. X., et al., 2018. Geomorphic Offsets along the Creeping Laohu Shan Section of the Haiyuan Fault, Northern Tibetan Plateau. Geosphere, 14(3): 1165-1186. https://doi.org/10.1130/GES01561.1
|
Chen, T., Zhang, P. Z., Liu, J., et al., 2014. Quantitative Study of Tectonic Geomorphology along Haiyuan Fault Based on Airborne LiDAR. Chinese Science Bulletin, 59(20): 2396-2409. https://doi.org/10.1007/s11434-014-0199-4
|
Chéry, J., Vernant, P., 2006. Lithospheric Elasticity Promotes Episodic Fault Activity. Earth and Planetary Science Letters, 243(1/2): 211-217. https://doi.org/10.1016/j.epsl.2005.12.014
|
Chevalier, M. L., Leloup, P. H., Replumaz, A., et al., 2016. Tectonic-Geomorphology of the Litang Fault System, SE Tibetan Plateau, and Implication for Regional Seismic Hazard. Tectonophysics, 682(5): 278-292. https://doi.org/10.1016/j.tecto.2016.05.039
|
Chevalier, M. L., Ryerson, F. J., Tapponnier, P., et al., 2005. Response to Comment on "Slip-Rate Measurements on the Karakorum Fault may Imply Secular Variations in Fault Motion". Science, 309(5739): 1326-1326. https://doi.org/10.1126/science.1112629
|
Cowgill, E., 2007. Impact of Riser Reconstructions on Estimation of Secular Variation in Rates of Strike-Slip Faulting: Revisiting the Cherchen River Site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 254(3/4): 239-255. https://doi.org/10.1016/j.epsl.2006.09.015
|
Cowgill, E., Gold, R. D., Chen, X. H., et al., 2009. Low Quaternary Slip Rate Reconciles Geodetic and Geologic Rates along the Altyn Tagh Fault, Northwestern Tibet. Geology, 37(7): 647-650. https://doi.org/10.1130/g25623a.1
|
Dair, L., Cooke, M. L., 2009. San Andreas Fault Geometry through the San Gorgonio Pass, California. Geology, 37(2): 119-122. https://doi.org/10.1130/g25101a.1
|
Daout, S., Jolivet, R., Lasserre, C., et al., 2016. Along-Strike Variations of the Partitioning of Convergence Across the Haiyuan Fault System Detected by InSAR. Geophysical Journal International, 205(1): 536-547. https://doi.org/10.1093/gji/ggw028
|
Deng, Q. D., 2011. Learning and Progress through Scientific Practices: Commemorating the 90th Anniversary of the Tragic Haiyuan Earthquake, Striving to Advance Our Abilities of Earthquake Prediction and Seismic Hazard Reduction. Seismology and Geology, 33(1): 1-14 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2011.01.001
|
Deng, Q. D., Sung, F., Zhu, S. L., et al., 1984. Active Faulting and Tectonics of the Ningxia‐Hui Autonomous Region, China. Journal of Geophysical Research: Solid Earth, 89(B6): 4427-4445. https://doi.org/10.1029/jb089ib06p04427
|
England, P., Houseman, G., 1986. Finite Strain Calculations of Continental Deformation: 2. Comparison with the India‐Asia Collision Zone. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676. https://doi.org/10.1029/jb091ib03p03664
|
England, P., Molnar, P., 2005. Late Quaternary to Decadal Velocity Fields in Asia. Journal of Geophysical Research: Solid Earth, 110(B12): 401. https://doi.org/10.1029/2004jb003541
|
Field, E. H., Arrowsmith, R. J., Biasi, G. P., et al., 2014. Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3): The Time-Independent Model. Bulletin of the Seismological Society of America, 104(3): 1122-1180. https://doi.org/10.1785/0120130164
|
Frankel, K. L., Dolan, J. F., Finkel, R. C., et al., 2007. Spatial Variations in Slip Rate along the Death Valley‐Fish Lake Valley Fault System Determined from LiDAR Topographic Data and Cosmogenic 10Be Geochronology. Geophysical Research Letters, 34(18): L18303. https://doi.org/10.1029/2007gl030549
|
Friedrich, A. M., Wernicke, B. P., Niemi, N. A., et al., 2003. Comparison of Geodetic and Geologic Data from the Wasatch Region, Utah, and Implications for the Spectral Character of Earth Deformation at Periods of 10 to 10 Million Years. Journal of Geophysical Research: Solid Earth, 108(B4): 2199. https://doi.org/10.1029/2001jb000682
|
Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. https://doi.org/10.1029/2005JB004120
|
Gasse, F., Arnold, M., Fontes, J. C., et al., 1991. A 13, 000-Year Climate Record from Western Tibet. Nature, 353(6346): 742-745. https://doi.org/10.1038/353742a0
|
Gaudemer, Y., Tapponnier, P., Meyer, B., et al., 1995. Partitioning of Crustal Slip between Linked, Active Faults in the Eastern Qilian Shan, and Evidence for a Major Seismic Gap, the 'Tianzhu Gap', on the Western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599-645. https://doi.org/10.1111/j.1365-246X.1995.tb01842.x
|
Gold, R. D., Cowgill, E., 2011. Deriving Fault-Slip Histories to Test for Secular Variation in Slip, with Examples from the Kunlun and Awatere Faults. Earth and Planetary Science Letters, 301(1-2): 52-64. https://doi.org/10.1016/j.epsl.2010.10.01
|
Gold, R. D., Cowgill, E., Arrowsmith, J. R., et al., 2009. Riser Diachroneity, Lateral Erosion, and Uncertainty in Rates of Strike‐Slip Faulting: A Case Study from Tuzidun along the Altyn Tagh Fault, NW China. Journal of Geophysical Research: Solid Earth, 114(B4): B04401. https://doi.org/10.1029/2008jb005913
|
Gold, R. D., Friedrich, A., Kübler, S., et al., 2017. Apparent Late Quaternary Fault‐Slip Rate Increase in the Southern Lower Rhine Graben, Central Europe. Bulletin of the Seismological Society of America, 107(2): 563-580. https://doi.org/10.1785/0120160197
|
Goren, L., Castelltort, S., Klinger, Y., 2015. Modes and Rates of Horizontal Deformation from Rotated River Basins: Application to the Dead Sea Fault System in Lebanon. Geology, 43(9): 843-846. https://doi.org/10.1130/g36841.1
|
Han, L. F., Jing, L. Z., Yao, W. Q., et al., 2021. Coseismic Slip Gradient at the Western Terminus of the 1920 Haiyuan Mw 7.9 Earthquake. Journal of Structural Geology, 152(1): 104442. https://doi.org/10.1016/j.jsg.2021.104442
|
Hancock, G. S., Anderson, R. S., 2002. Numerical Modeling of Fluvial Strath-Terrace Formation in Response to Oscillating Climate. GSA Bulletin, 114(9): 1131-1142. https://doi.org/10.1130/0016-7606(2002)114<1131:nmofst>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1131:nmofst>2.0.co;2
|
Hanks, T. C., Schwartz, D. P., 1987. Morphologic Dating of the Pre-1983 Fault Scarp on the Lost River Fault at Doublespring Pass Road, Custer County, Idaho. Bulletin of the Seismological Society of America, 77(3): 837-846. https://doi.org/10.1785/BSSA0770030837
|
Harkins, N., Kirby, E., 2008. Fluvial Terrace Riser Degradation and Determination of Slip Rates on Strike-Slip Faults: An Example from the Kunlun Fault, China. Geophysical Research Letters, 35(5): L05406. https://doi.org/10.1029/2007gl033073
|
He, W. G., Liu, B. H., Yuan, D. Y., et al., 2000. Research on Slip Rates of the Lenglongling Active Fault Zone. Northwestern Seismological Journal, 22(1): 90-97 (in Chinese with English abstract).
|
He, W. G., Yuan, D. Y., Ge, W. P., et al., 2010. Determination of the Slip Rate of the Lenglongling Fault in the Middle and Eastern Segments of the Qilian Mountain Active Fault Zone. Earthquake, 30(1): 131-137 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3274.2010.01.015
|
Hetzel, R., Niedermann, S., Tao, M. X., et al., 2002. Low Slip Rates and Long-Term Preservation of Geomorphic Features in Central Asia. Nature, 417(6887): 428-432. https://doi.org/10.1038/417428a
|
Hetzel, R., Tao, M. X., Stokes, S., et al., 2004. Late Pleistocene/Holocene Slip Rate of the Zhangye Thrust (Qilian Shan, China) and Implications for the Active Growth of the Northeastern Tibetan Plateau. Tectonics, 23(6): TC6006. https://doi.org/10.1029/2004TC00165
|
Hoeft, J. S., Frankel, K. L., 2010. Temporal Variations in Extension Rate on the Lone Mountain Fault and Strain Distribution in the Eastern California Shear Zone-Walker Lane. Geosphere, 6(6): 917-936. https://doi.org/10.1130/ges00603.1
|
Huang, Z. C., Zhou, Y., Qiao, X., et al., 2022. Kinematics of the ∼1 000 Km Haiyuan Fault System in Northeastern Tibet from High-Resolution Sentinel-1 InSAR Velocities: Fault Architecture, Slip Rates, and Partitioning. Earth and Planetary Science Letters, 583(6773): 117450. https://doi.org/10.1016/j.epsl.2022.117450
|
Hudnut, K. W., Borsa, A., Glennie, C., et al., 2002. High-Resolution Topography along Surface Rupture of the 16 October 1999 Hector Mine, California, Earthquake (Mw 7. 1) from Airborne Laser Swath Mapping. Bulletin of the Seismological Society of America, 92(4): 1570-1576. https://doi.org/10.1785/0120000934
|
Institute of Geology, China Earthquake Administration, Earthquake Administration of Ningxia Hui Autonomous Region, 1990. Active Haiyuan Fault Zone. Seismological Press, Beijing (in Chinese).
|
Jiang, W. L., Han, Z. J., Guo, P., et al., 2017. Slip Rate and Recurrence Intervals of the East Lenglongling Fault Constrained by Morphotectonics: Tectonic Implications for the Northeastern Tibetan Plateau. Lithosphere, 9(3): 417-430. https://doi.org/10.1130/l597.1
|
Jing, L. Z., Klinger, Y., Xu, X., et al., 2007. Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China. Bulletin of the Seismological Society of America, 97(1B): 14-34. https://doi.org/10.1785/0120050118
|
Jing, L. Z., Shao, Y. X., Klinger, Y., et al., 2015. Variability in Magnitude of Paleoearthquakes Revealed by Trenching and Historical Records, along the Haiyuan Fault, China. Journal of Geophysical Research: Solid Earth, 120(12): 8304-8333. https://doi.org/10.1002/2015jb012163
|
Jing, L. Z., Chen, T., Zhang, P. Z., et al., 2013. Illuminating the Active Haiyuan Fault, China by Airborne Light Detection and Ranging. Chinese Science Bulletin, 58(1): 41-45 (in Chinese with English abstract). doi: 10.1360/972012-1526
|
Jolivet, R., Lasserre, C., Doin, M. P., et al., 2013. Spatio-Temporal Evolution of Aseismic Slip along the Haiyuan Fault, China: Implications for Fault Frictional Properties. Earth and Planetary Science Letters, 377-378(2-3): 23-33. https://doi.org/10.1016/j.epsl.2013.07.020
|
King, G., 1986. Speculations on the Geometry of the Initiation and Termination Processes of Earthquake Rupture and Its Relation to Morphology and Geological Structure. Geophysical Research Letters, 124(3): 567-585. https://doi.org/10.1007/BF00877216
|
King, G., Nábělek, J., 1985. Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. Science (New York, N. Y. ), 228(4702): 984-987. https://doi.org/10.1126/science.228.4702.984
|
Kirby, E., Harkins, N., Wang, E. Q., et al., 2007. Slip Rate Gradients along the Eastern Kunlun Fault. Tectonics, 26(2): TC2010. https://doi.org/10.1029/2006TC002033
|
Klinger, Y., 2010. Relation between Continental Strike-Slip Earthquake Segmentation and Thickness of the Crust. Journal of Geophysical Research: Solid Earth, 115: B07306. https://doi.org/10.1029/2009JB006550
|
Klinger, Y., Etchebes, M., Tapponnier, P., et al., 2011. Characteristic Slip for Five Great Earthquakes along the Fuyun Fault in China. Nature Geoscience, 4(6): 389-392. https://doi.org/10.1038/ngeo1158
|
Knuepfer, P. L. K., 1992. Temporal Variations in Latest Quaternary Slip Across the Australian‐Pacific Plate Boundary, Northeastern South Island, New Zealand. Tectonics, 11(3): 449-464. https://doi.org/10.1029/91tc02890
|
Koehler, R. D., 2019. Active Faulting in the North Valleys Region of Reno, Nevada: A Distributed Zone within the Northern Walker Lane. Geomorphology, 326(5): 38-53. https://doi.org/10.1016/j.geomorph.2018.09.015
|
Küster, Y., Hetzel, R., Krbetschek, M., et al., 2006. Holocene Loess Sedimentation along the Qilian Shan (China): Significance for Understanding the Processes and Timing of Loess Deposition. Quaternary Science Reviews, 25(1/2): 114-125. https://doi.org/10.1016/j.quascirev.2005.03.003
|
Lague, D., Hovius, N., Davy, P., 2005. Discharge, Discharge Variability, and the Bedrock Channel Profile. Journal of Geophysical Research: Earth Surface, 110(F4): F04006. https://doi.org/10.1029/2004JF000259
|
Lai, Z. P., Ou, X. J., 2013. Basic Procedures of Optically Stimulated Luminescence (OSL) Dating. Progress in Geography, 32(5): 683-693 (in Chinese with English abstract).
|
Lasserre, C., Gaudemer, Y., Tapponnier, P., et al., 2002. Fast Late Pleistocene Slip Rate on the Leng Long Ling Segment of the Haiyuan Fault, Qinghai, China. Journal of Geophysical Research: Solid Earth, 107(B11): 2276. https://doi.org/10.1029/2000JB000060
|
Lasserre, C., Morel, P. H., Gaudemer, Y., et al., 1999. Postglacial Left Slip Rate and Past Occurrence of M≥8 Earthquakes on the Western Haiyuan fault, Gansu, China. Journal of Geophysical Research: Solid Earth, 104(B8): 17633-17651. https://doi.org/10.1029/1998JB900082
|
Lensen, G. J., 1968. Analysis of Progressive Fault Displacement during Downcutting at the Branch River Terraces, South Island, New Zealand. Geological Society of America Bulletin, 79(5): 545. https://doi.org/10.1130/0016-7606(1968)79[545:aopfdd]2.0.co;2
|
Li, C. Y., Zhang, P. Z., Yin, J. H., et al., 2009. Late Quaternary Left-Lateral Slip Rate of the Haiyuan Fault, Northeastern Margin of the Tibetan Plateau. Tectonics, 28: TC5010. https://doi.org/10.1029/2008TC002302
|
Li, H., Yu, Z. D., Cai, X. B., et al., 2013. River Terrace Extraction Based on Unmanned Aerial Vehicle Remote Sensing. Earth Science, 42(5): 734-742 (in Chinese with English abstract).
|
Li, Y. C., Nocquet, J. M., Shan, X. J., et al., 2021. Geodetic Observations of Shallow Creep on the Laohushan-Haiyuan Fault, Northeastern Tibet. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2020JB021576
|
Li, Y. C., Shan, X. J., Qu, C. Y., et al., 2018. Crustal Deformation of the Altyn Tagh Fault based on GPS. Journal of Geophysical Research: Solid Earth, 123(11): 10309-10322. https://doi.org/10.1029/2018JB015814
|
Li, Y. H., Cui, D. X., Hao, M., 2015. GPS-Constrained Inversion of Slip Rate on Major Active Faults in the Northeastern Margin of Tibet Plateau. Earth Science, 40(10): 1767-1780 (in Chinese with English abstract).
|
Liu, B. H., Zhang, J. L., Wu, J. H., et al., 2003. Reevaluating on Casualty in the Haiyuan Ms 8.5 Earthquake on December 16, 1920. Earthquake Research in China, 19(4): 386-399.
|
Liu, J. R., Ren, Z. K., Zhang, H. P., et al., 2018. Late Quaternary Slip Rate of the Laohushan Fault within the Haiyuan Fault Zone and Its Tectonic Implications. Chinese Journal of Geophysics, 61(004): 1281-1297 (in Chinese with English abstract).
|
Ma, H. C., 2011. Review on Applications of LiDAR Mapping Technology to Geosciences. Earth Science, 36(2): 347-354 (in Chinese with English abstract).
|
Malatesta, L. C., Avouac, J. P., Brown, N. D., et al., 2018. Lag and Mixing during Sediment Transfer across the Tian Shan Piedmont Caused by Climate-Driven Aggradation-Incision Cycles. Basin Research, 30(4): 613-635. https://doi.org/10.1111/bre.12267
|
Matrau, R., Klinger, Y., Van der Woerd, J., et al., 2019. Late Pleistocene-Holocene Slip Rate along the Hasi Shan Restraining Bend of the Haiyuan Fault: Implication for Faulting Dynamics of a Complex Fault System. Tectonics, 38(12): 4127-4154. https://doi.org/10.1029/2019TC005488
|
McGill, S. F., Rubin, C. M., 1999. Surficial Slip Distribution on the Central Emerson Fault during the June 28, 1992, Landers Earthquake, California. Journal of Geophysical Research: Solid Earth, 104(B3): 4811-4833. https://doi.org/10.1029/98jb01556
|
McGill, S. F., Sieh, K., 1991. Surficial Offsets on the Central and Eastern Garlock Fault Associated with Prehistoric Earthquakes. Journal of Geophysical Research: Solid Earth, 96(B13): 21597-21621. https://doi.org/10.1029/91jb02030
|
Mériaux, A. S., Ryerson, F. J., Tapponnier, P., et al., 2004. Rapid Slip along the Central Altyn Tagh Fault: Morphochronologic Evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research: Solid Earth, 109(B6): B06401. https://doi.org/10.1029/2003JB002558
|
Mériaux, A. S., Tapponnier, P., Ryerson, F. J., et al., 2005. The Aksay Segment of the Northern Altyn Tagh Fault: Tectonic Geomorphology, Landscape Evolution, and Holocene Slip Rate. Journal of Geophysical Research: Solid Earth, 110(B4): B04404. https://doi.org/10.1029/2004JB003210
|
Mériaux, A. S., Van der Woerd, J., Tapponnier, P., et al., 2012. The Pingding Segment of the Altyn Tagh Fault (91°E): Holocene Slip-Rate Determination from Cosmogenic Radionuclide Dating of Offset Fluvial Terraces. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/10.1029/2012JB009289
|
Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1), 1-47. https://doi.org/10.1046/j.1365-246X.1998.00567.x
|
Meyer, B., Tapponnier, P., Gaudemer, Y., et al., 1996. Rate of Left-Lateral Movement along the Easternmost Segment of the Altyn Tagh Fault, East of 96°E (China). Geophysical Journal International, 124(1): 29-44. https://doi.org/10.1111/j.1365-246x.1996.tb06350.x
|
Middleton, T. A., Walker, R. T., Parsons, B., et al., 2016. A Major, Intraplate, Normal‐faulting Earthquake: The 1739 Yinchuan Event in Northern China. Journal of Geophysical Research: Solid Earth, 121(1): 293-320. https://doi.org/10.1002/2015jb012355
|
Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
|
Oskin, M., Perg, L., Blumentritt, D., et al., 2007. A Slip Rate of the Calico Fault: Implications for Geologic versus Geodetic Rate Discrepancy in the Eastern California Shear Zone. Journal of Geophysical Research: Solid Earth, 112(B7): B03402. https://doi.org/10.1029/2006JB004451
|
Ou, Q., Kulikova, G., Yu, J., et al., 2020. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2019JB019244
|
Peltzer, G., Saucier, F., 1996. Present‐day Kinematics of Asia Derived from Geologic Fault Rates. Journal of Geophysical Research: Solid Earth, 101(B12): 27943-27956. https://doi.org/10.1029/96jb02698
|
Peltzer, G., Tapponnier, P., Armijo, R., 1989. Magnitude of Late Quaternary Left-Lateral Displacements along the North Edge of Tibet. Science, 246(4935): 1285-1289. https://doi.org/10.1126/science.246.4935.1285
|
Peltzer, G., Brown, N. D., Meriaux, A. S., et al., 2020. Stable Rate of Slip along the Karakax Section of the Altyn Tagh Fault from Observation of Interglacial and Postglacial Offset Morphology and Surface Dating. Journal of Geophysical Research: Solid Earth, 125 (5). https://doi.org/10.1029/2019JB018893
|
Poisson, B., Avouac, J. P., 2004. Holocene Hydrological Changes Inferred from Alluvial Stream Entrenchment in North Tian Shan (Northwestern China). The Journal of Geology, 112(2): 231-249. https://doi.org/10.1086/381659
|
Prush, V. B., Oskin, M. E., 2020. A Mechanistic Erosion Model for Cosmogenic Nuclide Inheritance in Single-Clast Exposure Ages. Earth and Planetary Science Letters, 535(268): 116066. https://doi.org/10.1016/j.epsl.2020.116066
|
Ran, Y. K., Duan, R. T., Deng, Q. D., et al., 1997. 3D Trench Excavation and Paleoseismology at Gaowanzi of the Haiyuan Fault. Seismology and Geology, 19(2): 97-107 (in Chinese with English abstract).
|
Ren, Z. K., Zhang, Z. Q., Chen, T., et al., 2016. Clustering of Offsets on the Haiyuan Fault and Their Relationship to Paleoearthquakes. Geological Society of America Bulletin, 128(1-2): 3-18. https://doi.org/10.1130/B31155.1
|
Rockwell, T. K., Keller, E. A., Clark, M. N., et al., 1984. Chronology and Rates of Faulting of Ventura River Terraces, California. Geological Society of America Bulletin, 95(12): 1466. https://doi.org/10.1130/0016-7606(1984)95<1466:carofo>2.0.co;2 doi: 10.1130/0016-7606(1984)95<1466:carofo>2.0.co;2
|
Rollins, C., Avouac, J. P., Landry, W., et al., 2018. Interseismic Strain Accumulation on Faults beneath Los Angeles, California. Journal of Geophysical Research: Solid Earth, 123(8): 7126-7150. https://doi.org/10.1029/2017JB015387
|
Rood, D. H., Burbank, D. W., Finkel, R. C., 2011. Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone. Earth and Planetary Science Letters, 301(3/4): 457-468. https://doi.org/10.1016/j.epsl.2010.11.006
|
Scharer, K. M., Biasi, G. P., Weldon, R. J., 2011. A Reevaluation of the Pallett Creek Earthquake Chronology Based on New AMS Radiocarbon Dates, San Andreas Fault, California. Journal of Geophysical Research: Solid Earth, 116: B12111. https://doi.org/10.1029/2010JB008099
|
Scharer, K. M., Weldon, R. J., Fumal, T. E., et al., 2007. Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B. C. : A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons. Bulletin of the Seismological Society of America, 97(4): 1054-1093. https://doi.org/10.1785/0120060137
|
Shao, Y. X., Jing, L. Z., Van Der Woerd, J., et al., 2021. Late Pleistocene Slip Rate of the Central Haiyuan Fault Constrained from Optically Stimulated Luminescence, 14C, and Cosmogenic Isotope Dating and High-Resolution Topography. Geological Society of America Bulletin, 133(7-8): 1347-1369. https://doi.org/10.1130/B35571.1
|
Sieh, K. E., Jahns, R. H., 1984. Holocene Activity of the San Andreas Fault at Wallace Creek, California. Geological Society of America Bulletin, 95(8): 883-896. https://doi.org/10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2 doi: 10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2
|
Tapponnier, P., Molnar, P., 1976. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 264(5584): 319-324. https://doi.org/10.1038/264319a0
|
Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905
|
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
|
Thompson, S. C., Weldon, R. J., Charles, M., et al., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth, 107(B9): ETG 7-1-ETG 7-32. https://doi.org/10.1029/2001JB000596
|
Van Der Woerd, J, Ryerson, F. J., Tapponnier, P., et al., 1998. Holocene Left-Slip Rate Determined by Cosmogenic Surface Dating on the Xidatan Segment of the Kunlun Fault (Qinghai, China). Geology, 26(8): 695-698. https://doi.org/10.1130/0091-7613(1998)026<0695:HLSRDB>2.3.CO;2 doi: 10.1130/0091-7613(1998)026<0695:HLSRDB>2.3.CO;2
|
Van Der Woerd, J., Tapponnier, P., Ryerson, F. J., et al., 2002. Uniform Postglacial Slip-Rate along the Central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C Dating of Riser Offsets, and Climatic Origin of the Regional Morphology. Geophysical Journal International, 148(3): 356-388. https://doi.org/10.1046/j.1365-246x.2002.01556.x
|
Van Der Woerd, J., Klinger, Y., Sieh, K., et al., 2006. Long-Term Slip Rate of the Southern San Andreas Fault from 10Be-26Al Surface Exposure Dating of an Offset Alluvial Fan. Journal of Geophysical Research: Solid Earth, 111(B4). https://doi.org/10.1029/2004JB003559
|
Wang, W., Qiao, X. J., Yang, S. M., et al., 2017. Present-Day Velocity Field and Block Kinematics of Tibetan Plateau from GPS Measurements. Geophysical Journal International, 208(2): 1088-1102. https://doi.org/10.1093/gji/ggw445
|
Weldon, R. J., Fumal, T. E., Biasi, G. P., et al., 2005. Past and Future Earthquakes on the San Andreas Fault. Science, 308(5724): 966-967. https://doi.org/10.1126/science.1111707
|
Weldon, R. J., Sieh, K. E., 1985. Holocene Rate of Slip and Tentative Recurrence Interval for Large Earthquakes on the San Andreas Fault, Cajon Pass, Southern California. Geological Society of America Bulletin, 96(6): 793. https://doi.org/10.1130/0016-7606(1985)96<793:hrosat>2.0.co;2 doi: 10.1130/0016-7606(1985)96<793:hrosat>2.0.co;2
|
Wells, R. E., Blakely, R. J., Bemis, S., 2020. Northward Migration of the Oregon Forearc on the Gales Creek Fault. Geosphere, 16(2): 660-684. https://doi.org/10.1130/ges02177.1
|
Weng, W. H., 1922. The 1920-12-16 Earthquake in Gansu Province. Science, 7: 105-144 (in Chinese).
|
Wesnousky, S. G., 2006. Predicting the Endpoints of Earthquake Ruptures. Nature, 444(7117): 358-360. https://doi.org/10.1038/nature05275
|
Xiang, H. F., Guo, S. M., Zhang, B. L., et al., 1988. Active Features of the Eastern Liupanshan Piedmont Reverse Fault Zone since Late Qurternary. Seismology and Geology, 20(4): 312-327 (in Chinese with English abstract).
|
Yang, H. B., Yang, X. P., Cunningham, D., et al., 2020. A Regionally Evolving Transpressional Duplex along the Northern Margin of the Altyn Tagh Fault: New Kinematic and Timing Constraints from the Sanweishan and Nanjieshan, China. Tectonics, 39(2). https://doi.org/10.1029/2019TC005749
|
Yao, W. Q., Liu-Zeng, J., Klinger, Y., et al., 2022. Late Quaternary Slip Rate of the Zihong Shan Branch and ItsImplications for Strain Partitioning Along the Haiyuan Fault, Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 127(5). https://doi.org/10.1029/2021JB023162
|
Yao, W. Q., Liu-Zeng, J., Oskin, M. E., et al., 2019. Reevaluation of the Late Pleistocene Slip Rate of the Haiyuan Fault Near Songshan, Gansu Province, China. Journal of Geophysical Research: Solid Earth, 124(5): 5217-5240. https://doi.org/10.1029/2018JB016907
|
Yin, A., Rumelhart, P. E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10): 1257-1295. https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2
|
Yuan, D. Y., Liu, B. H., Lv, T. Y., et al., 1997. Slip Rates of the Maomaoshan Fault Zone in Gansu Province Obtainted by Using Ages of Loess Palaeosoil Sequence. Seismology and Geology, 19(1): 1-8 (in Chinese with English abstract).
|
Yuan, D. Y., Liu, B. H., Lv, T. Y., et al., 1998. Study on the Segmentation in East Segment of the Northern Qilianshan Fault Zone. Northwestern Seismological Journal, 20(4): 27-34 (in Chinese with English abstract).
|
Yuan, D. Y., Zhang, P. Z., Ge, W. P., et al., 2008. Late Quaternary Strike-Slip Features along the Western Segment of Haiyuan-Qilianshan Fault. In: NE Tibetan Plateau. American Geophysical Union Fall Meeting, San Francisco.
|
Yue, Y. J., Ritts, B. D., Graham, S. A., 2001. Initiation and Long-Term Slip History of the Altyn Tagh Fault. International Geology Review, 43(12): 1087-1093. https://doi.org/10.1080/00206810109465062
|
Zhang, P. Z., Deng, Q. D., Zhang, G. M., et al., 2003. Active Tectonic Blocks and Strong Earthquakes in the Continent of China. Science in China Series D Earth Sciences, 46(S2): 13-24. https://doi.org/10.1360/03dz0002
|
Zhang, P. Z., Molnar, P., Burchfiel, B. C., et al., 1988a. Bounds on the Holocene Slip Rate of the Haiyuan Fault, North-Central China. Quaternary Research, 30(2): 151-164. https://doi.org/10.1016/0033-5894(88)90020-8
|
Zhang, P. Z., Molnar, P., Xu, X. W., 2007. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics, 26(5). https://doi.org/10.1029/2006TC002014
|
Zhang, P. Z., Molnar, P., Zhang, W. Q., et al., 1988b. Bounds on the Average Recurrence Interval of Major Earthquakes along the Haiyuan Fault in North-Central China. Seismological Research Letters, 59: 81-89. https://doi.org/10.1785/gssrl.59.3.81
|
Zheng, D. W., Zhang, P. Z., Wan, J. L., et al., 2006. Rapid Exhumation at ~8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology: Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1/2): 198-208. https://doi.org/10.1016/j.epsl.2006.05.023
|
Zheng, W. J., Zhang, P. Z., He, W. G., et al., 2013. Transformation of Displacement between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults. Tectonophysics, 584(B7): 267-280. https://doi.org/10.1016/j.tecto.2012.01.006
|
Zielke, O., Arrowsmith, J. R., Ludwig, L. G., et al., 2010. Slip in the 1857 and Earlier Large Earthquakes along the Carrizo Plain, San Andreas Fault. Science, 327(5969): 1119-1122. https://doi.org/10.1126/science.1182781
|
邓起东, 2011. 在科学研究的实践中学习和进步——纪念海原大地震90周年, 为地震预测和防震减灾事业而努力. 地震地质, 33(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201101003.htm
|
国家地震局地质研究所, 宁夏回族自治区地震局, 1990. 海原活动断裂带. 北京: 地震出版社: 1-286.
|
何文贵, 刘百篪, 袁道阳, 等, 2000. 冷龙岭活动断裂的滑动速率研究. 西北地震学报, 22(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200001017.htm
|
何文贵, 袁道阳, 葛伟鹏, 等, 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定. 地震, 30(1): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201001014.htm
|
赖忠平, 欧先交, 2013. 光释光测年基本流程. 地理科学进展, 32(5): 683-693. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201305003.htm
|
李辉, 余忠迪, 蔡晓斌等, 2017. 基于无人机遥感的河流阶地提取. 地球科学, 42(5): 734-742. doi: 10.3799/dqkx.2017.061
|
李煜航, 崔笃信, 郝明, 2015. 利用GPS数据反演青藏高原东北缘主要活动断裂滑动速率. 地球科学, 40(10): 1767-1780. doi: 10.3799/dqkx.2015.158
|
刘百篪, 张俊玲, 吴建华等, 2003. 1920年12月16日海原8.5级大地震的伤亡人口再评估. 中国地震, 19(4): 386-399. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200304007.htm
|
刘金瑞, 任治坤, 张会平等, 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论. 地球物理学报, 61(4): 1281-1297. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804006.htm
|
刘静, 陈涛, 张培震, 等, 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构. 科学通报, 58(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201301003.htm
|
马洪超, 2011. 激光雷达测量技术在地学中的若干应用. 地球科学, 36(2): 347-354. doi: 10.3799/dqkx.2011.037
|
冉勇康, 段瑞涛, 邓起东, 等, 1997. 海原断裂高湾子地点三维探槽的开挖与古地震研究. 地震地质, 19(2): 97-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ702.000.htm
|
翁文灏, 1922. 民国九年十二月十六日甘肃的地震. 科学, 7: 105-114.
|
向宏发, 虢顺民, 张秉良, 等, 1998. 六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征. 地震地质, 20(4): 312-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ804.004.htm
|
袁道阳, 刘百篪, 吕太乙, 等, 1997. 利用黄土剖面的古土壤年龄研究毛毛山断裂的滑动速率. 地震地质, 19(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ701.000.htm
|
袁道阳, 刘百篪, 吕太乙, 等, 1998. 北祁连山东段活动断裂带的分段性研究. 西北地震学报, 20(4): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ199804003.htm
|