• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Yu Tao, Wang Zongqi, Wang Dongsheng, Liu Xuanyu, Ma Shouxian, Nie Xiao, Ma Changqian, 2023. Provenance and Paleogeographic Significance of Upper Ordovician in NW Zhejiang: Evidence from Sedimentology, Clastic Composition and Chronology. Earth Science, 48(10): 3649-3670. doi: 10.3799/dqkx.2022.410
    Citation: Yu Tao, Wang Zongqi, Wang Dongsheng, Liu Xuanyu, Ma Shouxian, Nie Xiao, Ma Changqian, 2023. Provenance and Paleogeographic Significance of Upper Ordovician in NW Zhejiang: Evidence from Sedimentology, Clastic Composition and Chronology. Earth Science, 48(10): 3649-3670. doi: 10.3799/dqkx.2022.410

    Provenance and Paleogeographic Significance of Upper Ordovician in NW Zhejiang: Evidence from Sedimentology, Clastic Composition and Chronology

    doi: 10.3799/dqkx.2022.410
    • Received Date: 2021-10-29
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • There are many controversies about the Early Paleozoic tectono-sedimentary evolution of the South China plate. The NW Zhejiang is located in the Yangtze block adjacent to the Jiangshan-Shaoxing fault zone, where sedimentary facies transformation of carbonate to clastic rocks occurred in SE Yangtze block during the Late Ordovician. The temporal and spatial distribution of sedimentary facies and provenance analysis can provide evidence for the reconstruction of paleogeography of the SE Yangtze block. Based on detailed analyses of sedimentary facies, sandstone clastic composition, heavy mineral assemblage, geochemistry and detrital zircon U-Pb chronology, in this paper it comprehensively analyzes the provenance of the Upper Ordovician in NW Zhejiang, providing evidence for the reconstruction of paleogeography and tectonic evolution of SE Yangtze block. The Late Ordovician strata in NW Zhejiang are mainly composed of conglomerate, nodular limestone, sandstone, siltstone and mudstone. Sedimentary sequence and facies symbol indicate that the study area was deposited in a deep-sea sloped-shallow sea environment, and the sedimentary basement was inclined to NW. The clastic rocks were mainly composed of lithic sandstones and feldspar lithic sandstones with low compositional and structural maturity and were mainly composed of quartz (29%), feldspar (18%) and lithic (53%). Sandstone clasts and gravel are mainly composed of andesite, rhyolite, tuff, granite, slate, phyllite, quartzite, siltstone and chert, indicating a mixed source. The presence of pyroxene, chromite, magnetite and garnet grains indicates that the source rocks contain mafic and metamorphic rocks. The geochemical analysis shows that the sandstones and siltstones were deposited in active continental margin environment, and the provenance is intermediate acid island arc. The detrital zircon U-Pb ages show a mixed source of ca. 812 Ma and ca. 460 Ma, and the Early Paleozoic provenance can be matched with the Chencai Group. The paleocurrent indicates an SE origin, the provenance comes primarily from the island arc, and the SE Yangtze block was deposited in an active continental margin.

       

    • 致谢: 感谢中国地质科学院地质研究所闫臻研究员在野外及室内工作中给予的帮助.同时感谢审稿专家与本刊编辑对本文提出的宝贵建议和指导.
    • Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/BF00375292
      Cawood, P. A., Wang, Y. J., Xu, Y. J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere? Geology, 41(8): 903-906. https://doi.org/10.1130/g34395.1
      Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
      Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      Chen, J.J., Xu, X.B., Liang, C.H., et al., 2021. Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China. Earth Science, 46(10): 3421-3434(in Chinese with English abstract).
      Chen, Q., Fan, J. X., Zhang, L. N., et al., 2018. Paleogeographic Evolution of the Lower Yangtze Region and the Break of the "Platform-Slope-Basin" Pattern during the Late Ordovician. Scientia Sinica (Terrae), 48(6): 767-777(in Chinese). doi: 10.1360/N072018-00002
      Cox, R., Lowe, D. R., 1996. Quantification of the Effects of Secondary Matrix on the Analysis of Sandstone Composition, and a Petrographic-Chemical Technique for Retrieving Original Framework Grain Modes of Altered Sandstones. SEPM Journal of Sedimentary Research, 66(3): 548-558. https://doi.org/10.1306/d42683a1-2b26-11d7-8648000102c1865d
      Cui, X., Zhu, W.B., Fitzsimons, I., et al., 2015. U-Pb Age and Hf Isotope Composition of Detrital Zircons from Neoproterozoic Sedimentary Units in Southern Anhui Province, South China: Implications for the Provenance, Tectonic Evolution and Glacial History of the Eastern Jiangnan Orogen. Precambrian Research, 271: 65-82. https://doi.org/10.1016/j.precamres.2015.10.004
      Dickinson, W. R., 1970. Interpreting Detrital Modes of Graywacke and Arkose. SEPM Journal of Sedimentary Research, 40(2): 695-707. https://doi.org/10.1306/74d72018-2b21-11d7-8648000102c1865d
      Dickinson, W. R., 1979. Plate Tectonics and Sandstone Compositions. AAPG Bulletin, 63(12): 2164-2182. https://doi.org/10.1306/2f9188fb-16ce-11d7-8645000102c1865d
      Dickinson, W.R., 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. Springer, Dordrecht.
      Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2): 222. https://doi.org/10.1130/0016-7606(1983)94222: ponaps>2.0.co;2 doi: 10.1130/0016-7606(1983)94222:ponaps>2.0.co;2
      Dickinson, W.R., Gehrels, G.E., 2008. Sediment Delivery to the Cordilleran Foreland Basin: Insights from U-Pb Ages of Detrital Zircons in Upper Jurassic and Cretaceous Strata of the Colorado Plateau. American Journal of Science, 308(10): 1041-1082.
      Ekdale, A. A., Bromley, R. G., Pemberton, S. G., 1984. Deep-Water Slope Environments. Ichnology: The Use of Trace Fossils in Sedimentology and Stratigraphy. Society for Sedimentary Geology, Tulsa, Oklahoma, 232-247. https://doi.org/10.2110/scn.84.15.0232
      Fan, D.D., Li, C.X., Cai, J.G., et al., 2003. Sedimentary Successions and Environments of the Late Ordovician Wenchang Formation in Tonglu, Zhejiang. Acta Sedimentologica Sinica, 21(2): 247-254 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2003.02.009
      Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531-542. https://doi.org/10.1144/gsjgs.144.4.0531
      Floyd, P. A., Shail, R., Leveridge, B. E., et al., 1991. Geochemistry and Provenance of Rhenohercynian Synorogenic Sandstones: Implications for Tectonic Environment Discrimination. Geological Society, London, Special Publications, 57(1): 173-188. https://doi.org/10.1144/gsl.sp.1991.057.01.14
      Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application (2nd Edition). Springer Verlag, Berlin.
      Gan, X.C., Li, H.M., Sun, D.Z., et al., 1993. Geochronological Study on the Precambrian Metamorphic Basement in Northern Fujian. Geology of Fujian, 12(1): 17-32 (in Chinese with English abstract).
      Gao, L.Z., Yang, M.G., Ding, X.Z., et al., 2008. SHRIMP U-Pb Zircon Dating of Tuff in the Shuangqiaoshan and Heshangzhen Groups in South China—Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.10.017
      Gardner, R. L., Daczko, N. R., Halpin, J. A., et al., 2015. Discovery of a Microcontinent (Gulden Draak Knoll) Offshore Western Australia: Implications for East Gondwana Reconstructions. Gondwana Research, 28(3): 1019-1031. https://doi.org/10.1016/j.gr.2014.08.013
      Gromet, L.P., Haskin, L.A., Korotev, R.L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
      Gu, X. X., Liu, J. M., Zheng, M. H., et al., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72(3): 393-407. https://doi.org/10.1306/081601720393
      Guo, J.Q., Zhang, X.H., Zhang, Z.J., 2004. Turbitidy Current Sediments of Shuangqiaoshan Group in Middle Proterozoic in Xiushui Area, Jiangxi Province. Geological Science and Technology Information, 23(1): 27-32 (in Chinese with English abstract).
      He, W.H., Tang, T.T., Le, M.L., et al., 2014. Sedimentary and Tectonic Evolution of Nanhuan-Permian in South China. Earth Science, 39(8): 929-953 (in Chinese with English abstract).
      He, Y. Y., Niu, Z. Z., Yao, H. Z., et al., 2020. Provenance and Tectonic Setting of the Ordovician Sedimentary Succession at the Southeastern Margin of the Yangtze Block, South China: Implications for Paleotopographic Evolution of Northestern Gondwana. Journal of Asian Earth Sciences, 202: 104532. https://doi.org/10.1016/j.jseaes.2020.104532
      Herron, M. M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 58: 820-829. https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28: 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      Hsü, K.J., Li, J.L., Chen, H.H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-C
      Hu, X.J., Xu, J.K., Tong, C.X., et al., 1991. Geological Characteristics and Genesis of Palaeoproterozoic Granites from Longquan, Southwest Zhejiang. Journal of Mineralogy and Petrology, 11(3): 29-39 (in Chinese with English abstract).
      Huang, R., Liu, J., Yang, Z., et al., 2021. Ediacaran-Ordovician Landscape of Eastern South China: Constraints from Sedimentary Indices and Detrital Zircon U-Pb-Hf Isotopes from the Southeastern Margin of the Yangtze Block. Sedimentary Geology, 416: 105865. https://doi.org/10.1016/j.sedgeo.2021.105865
      Ingersoll, R. V., Suczek, C. A., 1979. Petrology and Provenance of Neogene Sand from Nicobar and Bengal Fans, DSDP Sites 211 and 218. Journal of Sedimentary Research, 49(4): 1217-1228. https://doi.org/10.1306/212f78f1-2b24-11d7-8648000102c1865d
      Ingersoll, R.V., Bullard, T.F., Ford, R.L., et al., 1984. The Effect of Grain Size on Detrital Modes: A Test of the Gazzi-Dickinson Point-Counting Method. Journal of Sedimentary Research, 54: 103-116. https://doi.org/10.1306/212f83b9-2b24-11d7-8648000102c1865d
      Jackson, S.E., Pearson, N.J., Griffin, W.L., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Johnsson, M. J., 1993. The System Controlling the Composition of Clastic Sediments. Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 284(3): 1-19. . https://doi.org/10.1130/spe284-p1
      Li, C., Hu, X.M., Wang, J.G., 2020. Sandstone Provenance Analysis in Longyan Supports the Existence of a Late Paleozoic Continental Arc in South China. Tectonophysics, 780: 228400. https://doi.org/10.1016/j.tecto.2020.228400
      Li, H. B., Jia, D., Wu, L., et al., 2013. Detrital Zircon Provenance of the Lower Yangtze Foreland Basin Deposits: Constraints on the Evolution of the Early Palaeozoic Wuyi-Yunkai Orogenic Belt in South China. Geological Magazine, 150(6): 959-974. https://doi.org/10.1017/s0016756812000969
      Li, L.M., Sun, M., Wang, Y. J., et al., 2011. U-Pb and Hf Isotopic Study of Detrital Zircons from the Meta-Sedimentary Rocks in Central Jiangxi Province, South China: Implications for the Neoproterozoic Tectonic Evolution of South China Block. Journal of Asian Earth Sciences, 41(1): 44-55. https://doi.org/10.1016/j.jseaes.2010.12.004
      Li, W. X., Li, X. H., Li, Z. X., 2008. Middle Neoproterozoic Syn-Rifting Volcanic Rocks in Guangfeng, South China: Petrogenesis and Tectonic Significance. Geological Magazine, 145(4): 475-489. https://doi.org/10.1017/s0016756808004561
      Li, X.H., Li, W.X., Li, Z.X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      Li, X.H., Zhao, J.X., Mcculloch, M.T., et al., 1997. Geochemical and Sm-Nd Isotopic Study of Neoproterozoic Ophiolites from Southeastern China: Petrogenesis and Tectonic Implications. Precambrian Research, 81(1-2): 129-144. https://doi.org/10.1016/S0301-9268(96)00032-0
      Li, X.H., Zhou, G.Q., Zhao, J.X., 1994. SHRIMP Ion Microprobe Zircon U-Pb Age of the Ne Jiangxi Ophiolite and Its Tectonic Implications. Geochimica, 23(2): 125-131 (in Chinese with English abstract).
      Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5-6): 772-793. https://doi.org/10.1130/b30021.1
      Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166. https://doi.org/10.1130/0091-7613(2002)0300163: gccisc>2.0.co;2 doi: 10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2
      Li, Z.X., Wartho, J.A., Occhipinti, S., et al., 2007. Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia: New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints. Precambrian Research, 159(1/2): 79-94. https://doi.org/10.1016/j.precamres.2007.05.003
      Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      Liu, R., 2009. Prehercynian Deep Crustal Melting in the Cathaysia Block: A Case Study in Zhejiang and Fujian Regions (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Liu, S.W., Yang, P.T., Wang, Z.Q., et al., 2013. LA-ICPMS Zircon U-Pb Ages and Geochemistry of Neoproterozoic Low-Grade Metavolcanic Rocks in Wuyuan-Dexing Area of Northeastern Jianxi Province. Acta Petrologica Sinica, 29(2): 581-593 (in Chinese with English abstract).
      Liu, W., Liu, Y., Zeng, Z. X., et al., 2020. K-Bentonites in Ordovician-Silurian Transition from South China: Implications for Tectonic Evolution in the Northern Margin of Gondwana. Journal of the Geological Society, 177(6): 1245-1260. https://doi.org/10.1144/jgs2020-049
      Lowe, D. R., 1982. Sediment Gravity Flows: Ⅱ Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. Journal of Sedimentary Petrology, 52: 279-297. https://doi.org/10.1306/212f7f31-2b24-11d7-8648000102c1865d
      Lu, K.J., Li, L.M., Lin, S.F., et al., 2020. Geochronological and Geochemical Data of Paragneiss and Amphibolite from the Chencai Group in South China: Implications for Petrogenesis and Tectonic Significance. Geological Journal, 55(10): 6823-6840. doi: 10.1002/gj.3845
      Ludwig, K., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ., Berkeley.
      Mange, M.A., Maurer, H.F.W., 1992. Heavy Minerals in Colour. Chapman & Hall., London.
      Marsaglia, K. M., Ingersoll, R. V., 1992. Compositional Trends in Arc-Related, Deep-Marine Sand and Sandstone: A Reassessment of Magmatic-Arc Provenance. Geological Society of America Bulletin, 104(12): 1637-1649. https://doi.org/10.1130/0016-7606(1992)1041637: ctiard>2.3.co;2 doi: 10.1130/0016-7606(1992)1041637:ctiard>2.3.co;2
      McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 21-40. https://doi.org/10.1130/spe284-p21
      Mclennan, S. M., Taylor, S. R., Mcculloch, M. T., et al., 1990. Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites: Crustal Evolution and Plate Tectonic Associations. Geochimica et Cosmochimica Acta, 54(7): 2015-2050. https://doi.org/10.1016/0016-7037(90)90269-Q
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016. Early Paleozoic Subduction in Cathaysia (Ⅰ): New Evidence from Nuodong Ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract).
      Pettijohn, F. J., Potter, P. E., Siever, R., 1987. Sand and Sandstone (Second Edition). Springer-Verlag, Berlin.
      Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical London, London
      Rong, J. Y., Zhan, R. B., Xu, H. G., et al., 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian Transition: Emerging Evidence and Possible Dynamics. Science in China (Series D), 53(1): 1-17. https://doi.org/10.1007/s11430-010-0005-3
      Shu, L.S., 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2006.04.002
      Shu, L.S., Chen, X.Y., Lou, F.S., 2020. Pre-Jurassic Tectonics of the South China. Acta Geologica Sinica, 94(2): 333-360 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.02.001
      Shu, L.S., Faure, M., Yu, J.H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3-4): 263-276. https://doi.org/10.1016/j.precamres.2011.03.003
      Sun, Z.M., Wang, X. L, Qi, L., et al., 2017. Formation of the Neoproterozoic Ophiolites in Southern China: New Constraints from Trace Element and PGE Geochemistry and Os Isotopes. Precambrian Research, 309: 88-101. https://doi.org/10.1016/j.precamres.2017.12.042
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Tong, L.X., Li, C., Liu, Z., et al., 2021. First Report of Phengites in the Longyou Paragneiss in the Northern Early Paleozoic Wuyi-Yunkai Orogen, South China: P-T Conditions, Zircon U-Pb Ages and Tectonic Implications. Journal of Asian Earth Sciences, 214: 104754. https://doi.org/10.1016/j.jseaes.2021.104754
      Wan, Y.S., Liu, D.Y., Xu, M.H., et al., 2007. SHRIMP U-Pb Zircon Geochronology and Geochemistry of Metavolcanic and Metasedimentary Rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic Implications and the Need to Redefine Lithostratigraphic Units. Gondwana Research, 12(1/2): 166-183. https://doi.org/10.1016/j.gr.2006.10.016
      Wang X.L., Zhou, J.C., Griffin, W.L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023
      Wang, D., Wang, X.L., Zhou, J.C., et al., 2013a. Unraveling the Precambrian Crustal Evolution by Neoproterozoic Conglomerates, Jiangnan Orogen: U-Pb and Hf Isotopes of Detrital Zircons. Precambrian Research, 233: 223-236. https://doi.org/10.1016/j.precamres.2013.05.005
      Wang, W., Zhou, M.F., Yan, D.P., et al. 2013b. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1-19. https://doi.org/10.1016/j.precamres.2013.05.013
      Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013c. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      Wang, J., Li, Z.X., 2001. Sequence Stratigraphy and Evolution of the Neoproterozoic Marginal Basins along Southeastern Yangtze Craton, South China. Gondwana Research, 4(1): 17-26. https://doi.org/10.1016/S1342-937X(05)70651-1
      Wang, L.W., Zhang, J.F., Chen, J.H., et al., 2015. Characteristics of Katian (Late ordovician) K-Bentonites from Anji, Zhejiang Province. Journal of Stratigraphy, 39(2): 155-168 (in Chinese with English abstract).
      Wang, W., Cawood, P. A., Pandit, M. K., et al., 2021. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228-232. https://doi.org/10.1130/g48308.1
      Wang, X.F., 2016. Ordovician Tectonic-Paleogeography in South China and Chrono- and Bio-Stratigraphic Division and Correlation. Earth Science Frontiers, 23(6): 253-267 (in Chinese with English abstract).
      Wang, X.L., Zhou, J.C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract).
      Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010tc002750
      Wu, L., Jia, D., Li, H. B., et al., 2010. Provenance of Detrital Zircons from the Late Neoproterozoic to Ordovician Sandstones of South China: Implications for Its Continental Affinity. Geological Magazine, 147(6): 974-980. https://doi.org/10.1017/s0016756810000725
      Xiang, H., 2008. Phanerozoic Metamorphism of Precambrian Metamorphic Basement in Southwestern Zhejiang (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Xiao, W. J., Sun, S., Li, J. L., et al., 2001. Early Mesozoic Collapse of the Late Paleozoic Archipelago in South China. Paradoxes in Geology. Elsevier, Amsterdam: 15-37. https://doi.org/10.1016/b978-044450560-6/50003-5
      Xu, Y. J., Du, Y. S., Yang, J. H., et al., 2010. Sedimentary Geochemistry and Provenance of the Lower and Middle Devonian Laojunshan Formation, the North Qilian Orogenic Belt. Science China Earth Sciences, 53(3): 356-367. https://doi.org/10.1007/s11430-010-0009-z
      Xu, Y.J., Cawood, P.A., Du, Y.S., et al., 2014. Early Paleozoic Orogenesis along Gondwana's Northern Margin Constrained by Provenance Data from South China. Tectonophysics, 636: 40-51. https://doi.org/10.1016/j.tecto.2014.08.022
      Xu, Y.J., Du, Y.S., Cawood, P.A., et al., 2012. Detrital Zircon Provenance of Upper Ordovician and Silurian Strata in the Northeastern Yangtze Block: Response to Orogenesis in South China. Sedimentary Geology, 267/268: 63-72. https://doi.org/10.1016/j.sedgeo.2012.05.009
      Yan, Z., Wang, Z., Chen, J., et al., 2010. Detrital Record of Neoproterozoic Arc-Magmatism along the NW Margin of the Yangtze Block, China: U-Pb Geochronology and Petrography of Sandstones. Journal of Asian Earth Sciences, 37(4): 322-334. https://doi.org/10.1016/j.jseaes.2009.09.001
      Yan, Z., Wang, Z.Q., Li, J.L., et al., 2008. Restoring the Original Tectonic Types of Sedimentary Basins in the Orogenic Belts. Geological Bulletin of China, 27(12): 2001-2013 (in Chinese with English abstract).
      Yao, J.L., Cawood, P.A., Shu, L.S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
      Yao, J.L., Shu, L.S., Santosh, M., 2011. Detrital Zircon U-Pb Geochronology, Hf-Isotopes and Geochemistry—New Clues for the Precambrian Crustal Evolution of Cathaysia Block, South China. Gondwana Research, 20(2-3): 553-567. https://doi.org/10.1016/j.gr.2011.01.005
      Yao, W. H, Li, Z. X, Li, W.X., et al., 2015. Detrital Provenance Evolution of the Ediacaran-Silurian Nanhua Foreland Basin, South China. Gondwana Research, 28(4): 1449-1465. https://doi.org/10.1016/j.gr.2014.10.018
      Yao, W. H, Li, Z.X., Li, W.X., et al., 2012. Post-Kinematic Lithospheric Delamination of the Wuyi-Yunkai Orogen in South China: Evidence from ca. 435 Ma High-Mg Basalts. Lithos, 154: 115-129. https://doi.org/10.1016/j.lithos.2012.06.033
      Yao, W.H., Li, Z.X., 2016. Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China. Tectonophysics, 674: 31-51. https://doi.org/10.1016/j.tecto.2016.02.012
      Ye, M.F., Li, X.H., Li, W.X., et al., 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block. Gondwana Research, 12(1/2): 144-156. https://doi.org/10.1016/j.gr.2006.09.001
      Yin, C., Lin, S., Davis, D. W, et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Research, 236: 145-156. https://doi.org/10.1016/j.precamres.2013.07.022
      Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2008. Where was South China in the Rodinia Supercontinent?: Evidence from U-Pb Geochronology and Hf Isotopes of Detrital Zircons Precambrian Research, 164(1-2): 1-15. https://doi.org/10.1016/j.precamres.2008.03.002
      Yu, J.H., O'Reilly, S.Y., Wang, L.J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1/2/3/4): 97-114. https://doi.org/10.1016/j.precamres.2010.05.016
      Yu, J.H., Wang, L.J., O'Reilly, S.Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3/4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      Zhai, M.G., 2013. The Formation of Main Ancient Land and United Land in China—Review and Prospect. Scientia Sinica (Terrae), 43(10): 1583-1606(in Chinese). doi: 10.1360/zd-2013-43-10-1583
      Zhang, C.L., Santosh, M., Zhu, Q. B., et al., 2015. The Gondwana Connection of South China: Evidence from Monazite and Zircon Geochronology in the Cathaysia Block. Gondwana Research, 28(3): 1137-1151. https://doi.org/10.1016/j.gr.2014.09.007
      Zhang, F.R., Shu, L.S., Wang, D.Z., et al., 2009. Discussion on the Tectonic Setting of Caledonian Granitoids in Eastern South China. Earth Science Frontiers, 16(1): 13 (in Chinese with English abstract).
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1
      Zhang, S.B., Wu, R.X., Zheng, Y.F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220/221: 45-64. https://doi.org/10.1016/j.precamres.2012.07.010
      Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhao, G.C., Wang, Y.J., Huang, B.C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
      Zhao, L., Cui, X.H., Zhai, M.G., et al., 2019a Emplacement and Metamorphism of the Mafic Rocks from the Chencai Terrane within the Cathaysia Block: Implications for the Paleozoic Orogenesis of the South China Block. Journal of Asian Earth Sciences, 173: 11-28. https://doi.org/10.1016/j.jseaes.2019.01.019
      Zhao, X. L., Jiang, Y., Xing, G. F., et al., 2019b. The Early Paleozoic Oceanic Island Seamount in the Chencai Area, Zhejiang Province: Implication of the Yangtze-Cathaysia Amalgamation. Geological Journal, 55(2): 1148-1162. https://doi.org/10.1002/gj.3480
      Zhao, L., Zhai, M.G., Zhou, X.W., et al., 2015. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China: Implications for Petrogenesis and Tectonic Setting. Lithos, 236/237: 226-244. https://doi.org/10.1016/j.lithos.2015.09.004
      Zhejiang Provincial Bureau of Geology and Mineral Resources, 1996. Rock Stratigraphy in Zhejiang Province. China University of Geosciences Press, Wuhan (in Chinese with English abstract).
      Zhejiang Provincial Survey Team, 1967. 1: 200 000 Lin'an Area Geological and Mineral Survey Report. Geological Bureau of Zhejiang Province, Hangzhou (in Chinese with English abstract).
      Zhou, X. H., Hu, X. M., Jiang, R., et al., 2020. Sedimentary Facies, Provenance and Geochronology of the Heshangzhen Group: Implications for the Tectonic Evolution of the Eastern Jiangnan Orogen, South China. Acta Geologica Sinica, 94(4): 1138-1158. https://doi.org/10.1111/1755-6724.14570
      陈家驹, 徐先兵, 梁承华, 等, 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义. 地球科学, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022
      陈清, 樊隽轩, 张琳娜, 等, 2018. 下扬子区奥陶纪晚期古地理演变及华南"台-坡-盆"格局的打破. 中国科学: 地球科学, 48(6): 767-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201806009.htm
      范代读, 李从先, 蔡进功, 等, 2003. 浙江桐庐晚奥陶世晚期沉积层序和沉积环境分析. 沉积学报, 21(2): 247-254. doi: 10.3969/j.issn.1000-0550.2003.02.009
      甘晓春, 李惠民, 孙大中, 等, 1993. 闽北前寒武纪基底的地质年代学研究. 福建地质, 12(1): 17-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ199301001.htm
      高林志, 杨明桂, 丁孝忠, 等, 2008. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄: 对江南新元古代造山带演化的制约. 地质通报, 27(10): 1744-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202309005.htm
      郭建秋, 张雄华, 章泽军, 2004. 江西修水地区中元古界双桥山群浊流沉积. 地质科技情报, 23(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200401006.htm
      何卫红, 唐婷婷, 乐明亮, 等, 2014. 华南南华纪-二叠纪沉积大地构造演化. 地球科学, 39(8): 929-953. doi: 10.3799/dqkx.2014.087
      胡雄健, 许金坤, 童朝旭, 等, 1991. 浙西南龙泉地区早元古代花岗岩类的地质特征及其成因探讨. 矿物岩石, 11(3): 29-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199103004.htm
      李献华, 周国庆, 赵建新, 1994. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义. 地球化学, 23(2): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX402.002.htm
      刘锐, 2009. 华夏地块前海西期地壳深熔作用——以浙闽地区为例(博士学位论文). 武汉: 中国地质大学.
      刘树文, 杨朋涛, 王宗起, 等, 2013. 赣东北婺源—德兴地区新元古代浅变质火山岩的地球化学和锆石U-Pb年龄. 岩石学报, 29(2): 581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302017.htm
      彭松柏, 刘松峰, 林木森, 等, 2016. 华夏早古生代俯冲作用(Ⅰ): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778. doi: 10.3799/dqkx.2016.065
      舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604002.htm
      舒良树, 陈祥云, 楼法生, 2020. 华南前侏罗纪构造. 地质学报, 94(2): 333-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202002001.htm
      汪隆武, 张建芳, 陈津华, 等, 2015. 浙江安吉上奥陶统钾质斑脱岩特征. 地层学杂志, 39(2): 155-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201502004.htm
      汪啸风, 2016. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比. 地学前缘, 23(6): 253-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606026.htm
      王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735, 696. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705004.htm
      向华, 2008. 浙西南前寒武纪变质基底岩系显生宙变质作用研究(硕士学位论文). 武汉: 中国地质大学.
      闫臻, 王宗起, 李继亮, 等, 2008. 造山带沉积盆地构造原型恢复. 地质通报, 27(12): 2001-2013. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812007.htm
      翟明国, 2013. 中国主要古陆与联合大陆的形成: 综述与展望. 中国科学: 地球科学, 43(10): 1583-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202305011.htm
      张芳荣, 舒良树, 王德滋, 等, 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16(1): 13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901034.htm
      浙江省地质矿产局, 1996. 浙江省岩石地层. 武汉: 中国地质大学出版社.
      浙江省区测队, 1967. 1: 20万临安幅区域地质矿产调查报告. 杭州: 浙江省地质局.
    • Relative Articles

    • dqkxzx-48-10-3649-附表1-3.docx
    • Cited by

      Periodical cited type(2)

      1. 宋震,李亚龙,赵云,高建华,印萍,杨守业. 基于XRF岩心扫描证据的福建木兰溪河口全新世沉积环境演化重建. 地球科学. 2024(06): 2213-2226 . 本站查看
      2. Qianghu Liu,Zhiyao Li,Hehe Chen,Ziqiang Zhou,Mingxuan Tan,Xiaomin Zhu. Current Geological Issues and Future Perspectives in Deep-Time Source-to-Sink Systems of Continental Rift Basins. Journal of Earth Science. 2024(05): 1758-1764 .

      Other cited types(0)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-0601020304050
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 50.5 %FULLTEXT: 50.5 %META: 43.1 %META: 43.1 %PDF: 6.4 %PDF: 6.4 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.7 %其他: 8.7 %其他: 0.1 %其他: 0.1 %China: 0.1 %China: 0.1 %三门峡: 0.2 %三门峡: 0.2 %上海: 3.1 %上海: 3.1 %东莞: 0.1 %东莞: 0.1 %东营: 0.3 %东营: 0.3 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.2 %保定: 0.2 %克拉玛依: 0.3 %克拉玛依: 0.3 %兰州: 0.8 %兰州: 0.8 %内江: 0.1 %内江: 0.1 %凉山: 0.3 %凉山: 0.3 %北京: 26.3 %北京: 26.3 %十堰: 0.2 %十堰: 0.2 %南京: 0.9 %南京: 0.9 %南昌: 0.3 %南昌: 0.3 %南通: 0.1 %南通: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.7 %呼和浩特: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 1.2 %天津: 1.2 %安康: 0.2 %安康: 0.2 %宣城: 0.3 %宣城: 0.3 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %廊坊: 0.2 %廊坊: 0.2 %张家口: 1.8 %张家口: 1.8 %徐州: 0.1 %徐州: 0.1 %德州: 0.1 %德州: 0.1 %忻州: 0.2 %忻州: 0.2 %恩施: 0.2 %恩施: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 0.5 %扬州: 0.5 %抚州: 0.6 %抚州: 0.6 %无锡: 0.2 %无锡: 0.2 %日喀则: 0.1 %日喀则: 0.1 %昆明: 1.2 %昆明: 1.2 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.2 %杭州: 2.2 %柳州: 0.1 %柳州: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %楚雄: 0.5 %楚雄: 0.5 %武汉: 2.7 %武汉: 2.7 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.3 %沈阳: 0.3 %海口: 0.1 %海口: 0.1 %海西: 0.2 %海西: 0.2 %淄博: 0.3 %淄博: 0.3 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.1 %湛江: 0.1 %滑铁卢: 0.1 %滑铁卢: 0.1 %漯河: 1.2 %漯河: 1.2 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 18.4 %芒廷维尤: 18.4 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.1 %苏州: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 12.3 %西宁: 12.3 %西安: 0.9 %西安: 0.9 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %达州: 0.2 %达州: 0.2 %运城: 1.0 %运城: 1.0 %连云港: 0.2 %连云港: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.8 %郑州: 0.8 %鄂州: 0.5 %鄂州: 0.5 %重庆: 1.0 %重庆: 1.0 %金华: 0.2 %金华: 0.2 %长沙: 0.9 %长沙: 0.9 %青岛: 0.1 %青岛: 0.1 %其他其他China三门峡上海东莞东营临汾乌鲁木齐保定克拉玛依兰州内江凉山北京十堰南京南昌南通台州合肥呼和浩特哥伦布唐山嘉兴天津安康宣城常州广州廊坊张家口徐州德州忻州恩施成都扬州抚州无锡日喀则昆明晋城朝阳杭州柳州格兰特县桂林楚雄武汉汕头沈阳海口海西淄博深圳温州湖州湘潭湛江滑铁卢漯河潍坊石家庄福州舟山芒廷维尤芝加哥苏州衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州达州运城连云港邯郸郑州鄂州重庆金华长沙青岛

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(1)

      Article views (748) PDF downloads(115) Cited by(2)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return