• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 7
    Jul.  2023
    Turn off MathJax
    Article Contents
    Sun Tianqi, Xu Zhaokai, Wan Shiming, Li Tiegang, Chang Fengming, 2023. Rare Earth Element Compositions for Oligocene-Miocene Sediments in Mentalle Basin of Southeastern Indian Ocean: Characteristics and Provenance Implications. Earth Science, 48(7): 2764-2777. doi: 10.3799/dqkx.2022.412
    Citation: Sun Tianqi, Xu Zhaokai, Wan Shiming, Li Tiegang, Chang Fengming, 2023. Rare Earth Element Compositions for Oligocene-Miocene Sediments in Mentalle Basin of Southeastern Indian Ocean: Characteristics and Provenance Implications. Earth Science, 48(7): 2764-2777. doi: 10.3799/dqkx.2022.412

    Rare Earth Element Compositions for Oligocene-Miocene Sediments in Mentalle Basin of Southeastern Indian Ocean: Characteristics and Provenance Implications

    doi: 10.3799/dqkx.2022.412
    • Received Date: 2022-06-30
    • Publish Date: 2023-07-25
    • In order to study the sedimentary source-to-sink processes for marine sediments deposited in the Mentalle Basin of Southeast Indian Ocean from the Oligocene to Miocene, here it conducts the rare earth element (REE) composition analysis on these sediments derived during the International Ocean Discovery Program (IODP) Expedition 369. It characterizes the REE compositions and then analyzes their controlling factors and provenance significance. Among the three standard materials of the chondrite, the post Archean Australian shale (PAAS) and the Upper Continental Crust (UCC), the overall REE compositions of the sample sediment, including the REE contents (ΣREE) and the light REE/heavy REE ratio (ΣLREE/ΣHREE) is close to the characteristics of UCC. The variations of ΣREE, (La/Yb)UCC and (Gd/Yb)UCC are obviously affected by grain size and weathering processes, while ΣLREE/ΣHREE, δEu, (La/Sm)UCC and (Sm/Nd)UCC have no correlation with grain size and weathering proxy. The UCC-normalized REE patterns, discriminant function based on REE composition, and the triangular diagram of Zr-Th-Sc indicate that the Yilgarn Craton is the most likely provenance of Oligocene-Miocene terrestrial sediments from the Mentalle Basin. And the main weathering parent rocks of the Yilgarn Craton change from intermediate-mafic rocks to acidic rocks at 13 Ma. The above provenance research results will lay a solid foundation for the reconstruction of paleoclimate and paleoenvironment in the Southeast Indian Ocean from the Oligocene to Miocene.

       

    • loading
    • Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
      Chen, H. J., Xu, Z. K., Bayon, G., et al., 2022. Enhanced Hydrological Cycle during Oceanic Anoxic Event 2 at Southern High Latitudes: New Insights from IODP Site U1516. Global and Planetary Change, 209: 103735. https://doi.org/10.1016/j.gloplacha.2022.103735
      Chen, S. F., Riganti, A., Wyche S., et al., 2003. Lithostratigraphy and Tectonic Evolution of Contrasting Greenstone Successions in the Central Yilgarn Craton, Western Australia. Precambrian Research, 127(1-3): 249-266. https://doi.org/10.1016/S0301-9268(03)00190-6
      Condie, K. C., 1991. Another Look at Rare Earth Elements in Shales. Geochimica et Cosmochimica Acta, 55(9): 2527-2531. https://doi.org/10.1016/0016-7037(91)90370-K
      Condie, K. C., Dengate, J., Cullers, R. L., 1995. Behavior of Rare Earth Elements in a Paleoweathering Profile on Granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2): 279-294. https://doi.org/10.1016/0016-7037(94)00280-Y
      Cullers, R. L., 1994. The Controls on the Major and Trace Element Variation of Shales, Siltstones, and Sandstones of Pennsylvanian-Permian Age from Uplifted Continental Blocks in Colorado to Platform Sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22): 4955-4972. https://doi.org/10.1016/0016-7037(94)90224-0
      Cullers, R. L., Barrett, T., Carlson, R., et al., 1987. Rare-Earth Element and Mineralogic Changes in Holocene Soil and Stream Sediment: A Case Study in the Wet Mountains, Colorado, USA. Chemical Geology, 63(3-4): 275-297. https://doi.org/10.1016/0009-2541(87)90167-7
      Cullers, R. L., Basu, A., Suttner, L. J., 1988. Geochemical Signature of Provenance in Sand-Size Material in Soils and Stream Sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology, 70(4): 335-348. https://doi.org/10.1016/0009-2541(88)90123-4
      Dadd, K. A., Kellerson, L., Borissova, I., et al., 2015. Multiple Sources for Volcanic Rocks Dredged from the Western Australian Rifted Margin. Marine Geology, 368: 42-57. https://doi.org/10.1016/j.margeo.2015.07.001
      DeConto, R., Pollard, D., Harwood, D., 2007. Sea Ice Feedback and Cenozoic Evolution of Antarctic Climate and Ice Sheets. Paleoceanography, 22(3): PA3214. https://doi.org/10.1029/2006PA001350
      Dou, Y. G., Li, J., Li, Y., 2012. Rare Earth Element Compositions and Provenance Implication of Surface Sediments in the Eastern Beibu Gulf. Geochimica, 41(2): 147-157 (in Chinese with English abstract). doi: 10.3969/j.issn.0379-1726.2012.02.006
      Fan, Q. C., Xu, Z. K., MacLeod, K. G., et al., 2022. First Record of Oceanic Anoxic Event 1d at Southern High Latitudes: Sedimentary and Geochemical Evidence from International Ocean Discovery Program Expedition 369. Geophysical Research Letters, 49(10): e2021GL097641. https://doi.org/10.1029/2021GL097641
      Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-59425-9.05001-0
      Groeneveld, J., Henderiks, J., Renema, W., et al., 2017. Australian Shelf Sediments Reveal Shifts in Miocene Southern Hemisphere Westerlies. Science Advances, 3(5): e1602567. https://doi.org/10.1126/sciadv.1602567
      Hobbs, R. W., Huber, B. T., Bogus, K. A., et al., 2019. Australia Cretaceous Climate and Tectonics. Proceedings of the International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.369.2019
      Holbourn, A., Kuhnt, W., Clemens, S., et al., 2013. Middle to Late Miocene Stepwise Climate Cooling: Evidence from a High-Resolution Deep Water Isotope Curve Spanning 8 Million Years. Paleoceanography, 28(4): 688-699. https://doi.org/10.1002/2013PA002538
      Holser, W. T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 309-323. https://doi.org/10.1016/S0031-0182(97)00069-2
      Jung, H. S., Lim, D. I., Jeong, D. H., et al., 2016. Discrimination of Sediment Provenance in the Yellow Sea: Secondary Grain-Size Effect and REE Proxy. Journal of Asian Earth Sciences, 123: 78-84. https://doi.org/10.1016/j.jseaes.2016.03.020
      Kennett, J. P., 1977. Cenozoic Evolution of Antarctic Glaciation, the Circum-Antarctic Ocean, and Their Impact on Global Paleoceanography. Journal of Geophysical Research, 82(27): 3843-3860. https://doi.org/10.1029/JC082i027p03843
      Kirkland, C. L., Spaggiari, C. V., Smithies, R. H., et al., 2015. The Affinity of Archean Crust on the Yilgarn- Albany-Fraser Orogen Boundary: Implications for Gold Mineralisation in the Tropicana Zone. Precambrian Research, 266: 260-281. https://doi.org/10.1016/j.precamres.2015.05.023
      Lan, X. H., Zhang, X. J., Zhao, G. T., et al., 2009. Distributions of Rare Earth Elements in Sediments from Core NT1 of the South Yellow Sea and Their Provenance Discrimination. Geochimica, 38(2): 123-132 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.02.003
      Lear, C. H., Elderfield, H., Wilson, P. A., 2000. Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287(5451): 269-272. https://doi.org/10.1126/science.287.5451.269
      Li, S. L., Li, S. Q., 2001. REE Composition and Source Tracing of Sediments from Core YA01 in Yellow Sea. Marine Geology & Quaternary Geology, 21(3): 51-56 (in Chinese with English abstract).
      Li, S. R., 2008. Crystallography and Mineralogy. Geological Publishing House, Beijing (in Chinese).
      Liu, J. G., Chen, Z., Yan, W., et al., 2010. Geochemical Characteristics of Rare Earth Elements in the Fine-Grained Fraction of Surface Sediment from South China Sea. Earth Science, 35(4): 563-571 (in Chinese with English abstract).
      Liu, X. S., Chen, X. G., Sun, K., et al., 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022 (in Chinese with English abstract).
      Mahoney, J. J., Jones, W. B., Frey, F. A., et al., 1995. Geochemical Characteristics of Lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: Cretaceous Plateau Volcanism in the Southeast Indian Ocean. Chemical Geology, 120(3-4): 315-345. https://doi.org/10.1016/0009-2541(94)00144-W
      Maier, W. D., Smithies, R. H., Spaggiari, C. V., et al., 2016. Petrogenesis and Ni-Cu Sulphide Potential of Mafic-Ultramafic Rocks in the Mesoproterozoic Fraser Zone within the Albany-Fraser Orogen, Western Australia. Precambrian Research, 281: 27-46. https://doi.org/10.1016/j.precamres.2016.05.004
      McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In: Lipin B. R., McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. De Gruyter, Berlin.
      Miller, K. G., Browning, J. V., Schmelz, W. J., et al., 2020. Cenozoic Sea-Level and Cryospheric Evolution from Deep-Sea Geochemical and Continental Margin Records. Sci. Adv. , 6(20): eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
      Müller, R. D., Seton, M., Zahirovic, S., et al., 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44: 107-138. https://doi.org/10.1146/annurev-earth-060115-012211
      Olierook, H. K. H., Jourdan, F., Merle, R. E., et al., 2016. Bunbury Basalt: Gondwana Breakup Products or Earliest Vestiges of the Kerguelen Mantle Plume? Earth and Planetary Science Letters, 440: 20-32. https://doi.org/10.1016/j.epsl.2016.02.008
      Pyle, D. G., Christie, D. M., Mahoney, J. J., et al., 1995. Geochemistry and Geochronology of Ancient Southeast Indian and Southwest Pacific Seafloor. Journal of Geophysical Research: Solid Earth, 100(B11): 22261-22282. https://doi.org/10.1029/95JB01424
      Qiu, Y., McNaughton, N. J., Groves, D. I., et al., 1999. First Record of 1.2 Ga Quartz Dioritic Magmatism in the Archaean Yilgarn Craton, Western Australia, and Its Significance. Australian Journal of Earth Sciences, 46(3): 421-428. https://doi.org/10.1046/j.1440-0952.1999.00715.x
      Scher, H. D., Whittaker, J. M., Williams, S. E., et al., 2015. Onset of Antarctic Circumpolar Current 30 Million Years Ago as Tasmanian Gateway Aligned with Westerlies. Nature, 523(7562): 580-583. https://doi.org/10.1038/nature14598
      Shang, Y. J., Wu H. W., Qu, Y. X., 2001. Comparison of Chemical Indices and Micro-Properties of Weathering Degrees of Granitic Rocks—A Case Study from Kowloon, Hong Kong. Scientia Geologica Sinica, 36(3): 279-294 (in Chinese with English abstract).
      Sharma, A., Rajamani, V., 2000. Major Element, REE, and Other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India. The Journal of Geology, 108(4): 487-496. https://doi.org/10.1086/314409
      Shi, X. F., Chen, L. R., Ma, J. G., et al., 1996. REE Geochemistry of Sediments from West Philippine Sea. Acta Mineralogica Sinica, 16(3): 260-267 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.1996.03.006
      Sun, T. Q., Xu, Z. K., Chang, F. M., et al., 2022. Climate Evolution of Southwest Australia in the Miocene and Its Main Controlling Factors. Science China Earth Sciences, 65(6): 1104-1115. https://doi.org/10.1007/s11430-021-9904-y
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific, Oxford.
      Tian, C. J., Cai, G. Q., Li, M. K., et al., 2021. Paleoclimatic and Paleoenvironmental Changes Recorded by Elemental Geochemistry in the Northwestern South China Sea since the Past -55 ka. Earth Science, 46(3): 975-985 (in Chinese with English abstract).
      Van De Flierdt, T., Frank, M., Halliday, A. N., et al., 2004. Deep and Bottom Water Export from the Southern Ocean to the Pacific over the Past 38 Million Years. Paleoceanography, 19(1): PA1020. https://doi.org/10.1029/2003PA000923
      Wan, S. M., Clift, P. D., Zhao, D. B., et al., 2017. Enhanced Silicate Weathering of Tropical Shelf Sediments Exposed during Glacial Lowstands: A Sink for Atmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123-144. https://doi.org/10.1016/j.gca.2016.12.010
      Wilde, S. A., Nelson, D. R., 2001. Geology of the Western Yilgarn Craton and Leeuwin Complex, Western Australia—A Field Guide. Record 2001/15. In: The 4th International Archaean Symposium. Western Australia Geological Survey, Perth.
      Xu, Z. K., Li, T. G., Clift, P. D., et al., 2018. Bathyal Records of Enhanced Silicate Erosion and Weathering on the Exposed Luzon Shelf during Glacial Lowstands and Their Significance for Atmospheric CO2 Sink. Chemical Geology, 476(5): 302-315. https://doi.org/10.1016/j.chemgeo.2017.11.027
      Xu, Z. K., Li, T. G., Wan, S. M., et al., 2014. Geochemistry of Rare Earth Elements in the Mid-Late Quaternary Sediments of the Western Philippine Sea and Their Paleoenvironmental Significance. Science China Earth Sciences, 57(4): 802-812. https://doi.org/10.1007/s11430-013-4786-z
      Yang, S. Y., Li, C. X., 1999. Research Progress in REE Tracer for Sediment Source. Advance in Earth Sciences, 14(2): 164-167 (in Chinese with English abstract).
      Yang, S. Y., Li, C. X., Jung, H. S., et al., 2003. Re-Understanding of REE Restriction and Tracing Significance in Sediments of the Yellow River. Progress in Natural Science, 13(4): 365-371 (in Chinese).
      Zheng, F., Li, J. P., Liu, T., 2014. Some Advances in Studies of the Climatic Impacts of the Southern Hemisphere Annular Mode. Acta Meteorologica Sinica, 72(5): 926-939 (in Chinese with English abstract).
      窦衍光, 李军, 李炎, 2012. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义. 地球化学, 41(2): 147-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201202005.htm
      蓝先洪, 张宪军, 赵广涛, 等, 2009. 南黄海NT1孔沉积物稀土元素组成与物源判别. 地球化学, 38(2): 123-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200902003.htm
      李双林, 李绍全, 2001. 黄海YA01孔沉积物稀土元素组成与源区示踪. 海洋地质与第四纪地质, 21(3): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200103009.htm
      李胜荣, 2008. 结晶学与矿物学. 北京: 地质出版社.
      刘建国, 陈忠, 颜文, 等, 2010. 南海表层沉积物中细粒组分的稀土元素地球化学特征. 地球科学, 35(4): 563-571. doi: 10.3799/dqkx.2010.072
      刘雪松, 陈雪刚, 孙凯, 等, 2021. 南海东部次海盆U1431站位中中新世以来的沉积物来源特征. 地球科学, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
      尚彦军, 吴宏伟, 曲永新, 2001. 花岗岩风化程度的化学指标及微观特征对比——以香港九龙地区为例. 地质科学, 36(3): 279-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103002.htm
      石学法, 陈丽蓉, 马建国, 等, 1996. 西菲律宾海沉积物稀土元素地球化学. 矿物学报, 16(3): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199603005.htm
      田成静, 蔡观强, 李明坤, 等, 2021. 南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变. 地球科学, 46(3): 975-985. doi: 10.3799/dqkx.2020.276
      杨守业, 李从先, 1999. REE示踪沉积物物源研究进展. 地球科学进展, 14(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.009.htm
      杨守业, 李从先, Jung, H. S., et al., 2003. 黄河沉积物中REE制约与示踪意义再认识. 自然科学进展, 13(4): 365-371. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200304005.htm
      郑菲, 李建平, 刘婷, 2014. 南半球环状模气候影响的若干研究进展. 气象学报, 72(5): 926-939. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (448) PDF downloads(52) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return