Citation: | Zhu Guangyou, Wang Ruilin, Wang Ting, Wen Zhigang, Zhang Zhiyao, 2023. Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin. Earth Science, 48(2): 398-412. doi: 10.3799/dqkx.2022.414 |
Birch, S. F., Cullum, T. V., Dean, R. A., et al., 1952. Thiaadamantane. Nature, 170(4328): 629-630. https://doi.org/10.1038/170629b0
|
Cai, C. F., Amrani, A., Worden, R. H., et al., 2016a. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182: 88-108. https://doi.org/10.1016/j.gca.2016.02.036
|
Cai, C. F., Xiao, Q. L., Fang, C. C., et al., 2016b. The Effect of Thermochemical Sulfate Reduction on Formation and Isomerization of Thiadiamondoids and Diamondoids in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Organic Geochemistry, 101: 49-62. https://doi.org/10.1016/j.orggeochem.2016.08.006
|
Chen, Z. H., Zhang, P., Chai, Z., et al., 2020. Identication and Geochemical Application in Crude Oil. Journal of Earth Sciences and Environment, 42(2): 143-158 (in Chinese with English abstract).
|
Clark, T., Knox, T. M., McKervey, M. A., et al., 1979. Thermochemistry of Bridged-Ring Substances. Enthalpies of Formation of some Diamondoid Hydrocarbons and of Perhydroquinacene. Comparisons with Data from Empirical Force Field Calculations. Journal of the American Chemical Society, 101(9): 2404-2410. https://doi.org/10.1021/ja00503a028
|
Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54-57. https://doi.org/10.1038/19953
|
Fang, C. C., Zhai, J., Hu, G. Y., et al., 2021. A Simultaneous Determination Method for Diamondoids and Thiadiamondoids in Condensate Oil and Its Geological Significance. Petroleum Geology & Experiment, 43(5): 906-914 (in Chinese with English abstract).
|
Gordadze, G. N., 2008. Geochemistry of Cage Hydrocarbons. Petroleum Chemistry, 48(4): 241-253. https://doi.org/10.1134/S0965544108040014
|
Gvirtzman, Z., Said-Ahmad, W., Ellis, G. S., et al., 2015. Compound-Specific Sulfur Isotope Analysis of Thiadiamondoids of Oils from the Smackover Formation, USA. Geochimica et Cosmochimica Acta, 167: 144-161. https://doi.org/10.1016/j.gca.2015.07.008
|
Jiang, N. H., Zhu, G. Y., Zhang, S. C., et al., 2008. Detection of 2-thiaadamantanes in the Oil from Well TZ-83 in Tarim Basin and Its Geological implication. Chinese Science Bulletin, 53(3): 396-401 (in Chinese). doi: 10.1007/s11434-008-0099-6
|
Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004
|
Li, K. K., Cai, C. F., Cai, L., et al., 2021. Origin of Sulfides in the Middle and Lower Ordovician Carbonates in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 28(3): 806-814 (in Chinese with English abstract).
|
Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract).
|
Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings: Old and New Insights. Sedimentary Geology, 140(1/2): 143-175. https://doi.org/10.1016/S0037-0738(0)00176-7
|
Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018a. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61(10): 1440-1450. https://doi.org/10.1007/s11430-017-9244-7
|
Ma, A., Zhu, C. S., Gu, Y., et al., 2018b. Concentrations Analysis of Lower Thiadiamondoids of Cambrian Oil from Well Zhongshen 1C of Tazhong Uplift, Tarim Basin, NW China. Natural Gas Geoscience, 29(7): 1009-1019 (in Chinese with English abstract).
|
Ma, A., Jin, Z. J., Zhu, C. S., et al., 2018c. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61: 1440-1450 (in Chinese). doi: 10.1007/s11430-017-9244-7
|
Ma, A., Jin, Z. J., Zhu, C. S., et al., 2018d. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from Molecular Markers. Oil & Gas Geology, 39(4): 730-737(in Chinese with English abstract).
|
Wei, Z. B., 2006. Molecular Organic Geochemistry of Cage Compounds and Biomarkers in the Geosphere: a Novel Approach to Understand Petroleum Evolution and Alteration(Dissertation). Stanford University, California, 274-309.
|
Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6): 3431-3436. https://doi.org/10.1021/ef7003333
|
Wei, Z. B., Mankiewicz, P., Walters, C., et al., 2011. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field. Organic Geochemistry, 42(2): 121-133. https://doi.org/10.1016/j.orggeochem.2010.12.002
|
Wei, Z. B., Walters, C. C., Michael Moldowan, J., et al., 2012. Thiadiamondoids as Proxies for the Extent of Thermochemical Sulfate Reduction. Organic Geochemistry, 44: 53-70. https://doi.org/10.1016/j.orggeochem.2011.11.008
|
Yuan, Y. Y., Wang, T. K., Cai, C. F. et al., 2020. Relationships between Sulfur-Containing Conpound Types in Crude Oil and Causes of Thermochemical Sulphate Reduction in Tazhong Area. Journal of Southwest Petroleum University(Science & Technology Edition), 42(2): 48-60(in Chinese with English abstract).
|
Zhang, Z. Y., Zhang, Y. J., Zhu, G. Y., et al., 2019. Impacts of Thermochemical Sulfate Reduction, Oil Cracking, and Gas Mixing on the Petroleum Fluid Phase in the Tazhong Area, Tarim Basin, China. Energy & Fuels, 33(2): 968-978. https://doi.org/10.1021/acs.energyfuels.8b03931
|
Zhu, G. Y., Huang, H. P., Wang, H. T., 2015. Geochemical Significance of Discovery in Cambrian Reservoirs at Well ZS1 of the Tarim Basin, Northwest China. Energy & Fuels, 29(3): 1332-1344. https://doi.org/10.1021/ef502345n
|
Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-Buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69: 1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007
|
Zhu, G. Y., Wang, M., Zhang, Y., et al., 2018a. Low-Molecular-Weight Organic Polysulfanes in Petroleum. Energy & Fuels, 32(6): 6770-6773. https://doi.org/10.1021/acs.energyfuels.8b01292
|
Zhu, G. Y., Zhang, Y., Wang, M., et al., 2018b. Discovery of High-Abundance Diamondoids and Thiadiamondoids and Severe TSR Alteration of Well ZS1C Condensate, Tarim Basin, China. Energy & Fuels, 32(7): 7383-7392. https://doi.org/10.1021/acs.energyfuels.8b00908
|
Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018c. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123: 136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003
|
Zhu, G. Y., Wang, P., Wang, M., et al., 2019a. Occurrence and Origins of Thiols in Deep Strata Crude Oils, Tarim Basin, China. ACS Earth and Space Chemistry, 3(11): 2499-2509. https://doi.org/10.1021/acsearthspacechem.9b00070
|
Zhu, G. Y., Zhang, Y., Zhou, X. X., et al., 2019b. TSR, Deep Oil Cracking and Exploration Potential in the Hetianhe Gas Field, Tarim Basin, China. Fuel, 236: 1078-1092. https://doi.org/10.1016/j.fuel.2018.08.119
|
Zhu, G. Y., Zhang, Z. Y., Milkov, A. V., et al., 2019c. Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs: Example from the Tazhong Area, Tarim Basin, China. Fuel, 253: 998-1017. https://doi.org/10.1016/j.fuel.2019.05.030
|
Zhu, G. Y., Zhang, Z. Y., Zhou, X. X., et al., 2019d. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930
|
Zhu, G. Y., Li, J. F., Zhang, Z. Y., 2021. Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin. Earth Science, 1-17. (2021-11-09).
|
陈中红, 张平, 柴智, 等, 2020. 原油中硫代金刚烷的分析鉴定和地球化学应用. 地球科学与环境学报, 42 (2): 143-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202002002.htm
|
房忱琛, 翟佳, 胡国艺, 等, 2021. 凝析油中金刚烷类和硫代金刚烷类化合物同步检测方法及地质意义——以塔里木盆地塔中地区凝析油为例. 石油实验地质, 43 (5): 906-914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105021.htm
|
姜乃煌, 朱光有, 张水昌, 等, 2007. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义. 科学通报, 52 (24): 2871-2875. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200724010.htm
|
李开开, 蔡春芳, 蔡镏璐, 等, 2012. 塔河地区中下奥陶统储层硫化物成因分析. 岩石学报, 28 (3): 806-814. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203010.htm
|
李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46 (8): 2819-2831. doi: 10.3799/dqkx.2020.197
|
马安来, 朱翠山, 顾忆, 等, 2018b. 塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析. 天然气地球科学, 188 (7): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807011.htm
|
马安来, 金之钧, 朱翠山, 等, 2018c. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义. 中国科学: 地球科学, 48: 1312-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201810004.htm
|
马安来, 金之钧, 朱翠山, 等, 2018d. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据. 石油与天然气地质, 39 (0): 730-737, 748. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804011.htm
|
袁余洋, 汪天凯, 蔡春芳, 等, 2020. 塔中地区原油含硫化合物类型与TSR成因关系. 西南石油大学学报(自然科学版), 42 (2): 48-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202002005.htm
|
朱光有, 李婧菲; 张志遥, 2021. 深层油气相态多样性成因与次生地球化学作用强度评价——以塔里木盆地海相油气为例. 地球科学,
|