• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 2
    Feb.  2023
    Turn off MathJax
    Article Contents
    Zhu Guangyou, Wang Ruilin, Wang Ting, Wen Zhigang, Zhang Zhiyao, 2023. Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin. Earth Science, 48(2): 398-412. doi: 10.3799/dqkx.2022.414
    Citation: Zhu Guangyou, Wang Ruilin, Wang Ting, Wen Zhigang, Zhang Zhiyao, 2023. Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin. Earth Science, 48(2): 398-412. doi: 10.3799/dqkx.2022.414

    Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin

    doi: 10.3799/dqkx.2022.414
    • Received Date: 2022-12-01
    • Publish Date: 2023-02-25
    • Thiadiamondoids are commonly considered to be typical products of thermochemical sulfate reduction (TSR). Thiadiamondoids have been found in high quantities in crude oil in the Tarim Basin. By using a silver nitrate impregnated silica gel column, organic sulfur compounds (OSC) were separated from the marine oil samples from the Tarim Basin. By using GC⁃MS analysis, 76 compounds were identified in OSC fraction, including all lower thiadiamondoids (1⁃, 2⁃, and 3⁃cage thiadiamondoids), part of higher thiadiamondoids (4⁃, 5⁃, and 6⁃cage thiadiamondoids), and diamondoidthiols. C0⁃C2 thiaadamantanes (high volatile thiadiamondoids) comprise nearly half of the total thiaadamantanes in most of the samples. ZS1C and ZS5 samples are special compared with the rest of the samples, in which high volatile thiadiamondoids occupies only about 20% relative abundance. the ratios of thiaadamantanes: thiadiamantanes: thiatriamantanes of these two samples are approximately 4∶4∶1, while those of the other samples are generally 8∶1∶0. Thiadiamondoids can serve as a quantitative indicator of the strength of TSR. The oil sample has migrated, as evidenced by the high ratio of thiaadamantanes and the high relative abundance of high volatile thiadiamondoids. The content differences of thiadiamondoids can effectively indicate the intensity of TSR and to judge whether TSR is in⁃situ, and the OSC component of the TSR product is also present, along with a significant quantity of H2S gas. It can also provide guidance for the prediction of the distribution and genesis of hydrogen sulfide and petroleum exploration and exploitation decisions in deep strata.

       

    • loading
    • Birch, S. F., Cullum, T. V., Dean, R. A., et al., 1952. Thiaadamantane. Nature, 170(4328): 629-630. https://doi.org/10.1038/170629b0
      Cai, C. F., Amrani, A., Worden, R. H., et al., 2016a. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182: 88-108. https://doi.org/10.1016/j.gca.2016.02.036
      Cai, C. F., Xiao, Q. L., Fang, C. C., et al., 2016b. The Effect of Thermochemical Sulfate Reduction on Formation and Isomerization of Thiadiamondoids and Diamondoids in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Organic Geochemistry, 101: 49-62. https://doi.org/10.1016/j.orggeochem.2016.08.006
      Chen, Z. H., Zhang, P., Chai, Z., et al., 2020. Identication and Geochemical Application in Crude Oil. Journal of Earth Sciences and Environment, 42(2): 143-158 (in Chinese with English abstract).
      Clark, T., Knox, T. M., McKervey, M. A., et al., 1979. Thermochemistry of Bridged-Ring Substances. Enthalpies of Formation of some Diamondoid Hydrocarbons and of Perhydroquinacene. Comparisons with Data from Empirical Force Field Calculations. Journal of the American Chemical Society, 101(9): 2404-2410. https://doi.org/10.1021/ja00503a028
      Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54-57. https://doi.org/10.1038/19953
      Fang, C. C., Zhai, J., Hu, G. Y., et al., 2021. A Simultaneous Determination Method for Diamondoids and Thiadiamondoids in Condensate Oil and Its Geological Significance. Petroleum Geology & Experiment, 43(5): 906-914 (in Chinese with English abstract).
      Gordadze, G. N., 2008. Geochemistry of Cage Hydrocarbons. Petroleum Chemistry, 48(4): 241-253. https://doi.org/10.1134/S0965544108040014
      Gvirtzman, Z., Said-Ahmad, W., Ellis, G. S., et al., 2015. Compound-Specific Sulfur Isotope Analysis of Thiadiamondoids of Oils from the Smackover Formation, USA. Geochimica et Cosmochimica Acta, 167: 144-161. https://doi.org/10.1016/j.gca.2015.07.008
      Jiang, N. H., Zhu, G. Y., Zhang, S. C., et al., 2008. Detection of 2-thiaadamantanes in the Oil from Well TZ-83 in Tarim Basin and Its Geological implication. Chinese Science Bulletin, 53(3): 396-401 (in Chinese). doi: 10.1007/s11434-008-0099-6
      Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004
      Li, K. K., Cai, C. F., Cai, L., et al., 2021. Origin of Sulfides in the Middle and Lower Ordovician Carbonates in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 28(3): 806-814 (in Chinese with English abstract).
      Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract).
      Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings: Old and New Insights. Sedimentary Geology, 140(1/2): 143-175. https://doi.org/10.1016/S0037-0738(0)00176-7
      Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018a. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61(10): 1440-1450. https://doi.org/10.1007/s11430-017-9244-7
      Ma, A., Zhu, C. S., Gu, Y., et al., 2018b. Concentrations Analysis of Lower Thiadiamondoids of Cambrian Oil from Well Zhongshen 1C of Tazhong Uplift, Tarim Basin, NW China. Natural Gas Geoscience, 29(7): 1009-1019 (in Chinese with English abstract).
      Ma, A., Jin, Z. J., Zhu, C. S., et al., 2018c. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61: 1440-1450 (in Chinese). doi: 10.1007/s11430-017-9244-7
      Ma, A., Jin, Z. J., Zhu, C. S., et al., 2018d. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from Molecular Markers. Oil & Gas Geology, 39(4): 730-737(in Chinese with English abstract).
      Wei, Z. B., 2006. Molecular Organic Geochemistry of Cage Compounds and Biomarkers in the Geosphere: a Novel Approach to Understand Petroleum Evolution and Alteration(Dissertation). Stanford University, California, 274-309.
      Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6): 3431-3436. https://doi.org/10.1021/ef7003333
      Wei, Z. B., Mankiewicz, P., Walters, C., et al., 2011. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field. Organic Geochemistry, 42(2): 121-133. https://doi.org/10.1016/j.orggeochem.2010.12.002
      Wei, Z. B., Walters, C. C., Michael Moldowan, J., et al., 2012. Thiadiamondoids as Proxies for the Extent of Thermochemical Sulfate Reduction. Organic Geochemistry, 44: 53-70. https://doi.org/10.1016/j.orggeochem.2011.11.008
      Yuan, Y. Y., Wang, T. K., Cai, C. F. et al., 2020. Relationships between Sulfur-Containing Conpound Types in Crude Oil and Causes of Thermochemical Sulphate Reduction in Tazhong Area. Journal of Southwest Petroleum University(Science & Technology Edition), 42(2): 48-60(in Chinese with English abstract).
      Zhang, Z. Y., Zhang, Y. J., Zhu, G. Y., et al., 2019. Impacts of Thermochemical Sulfate Reduction, Oil Cracking, and Gas Mixing on the Petroleum Fluid Phase in the Tazhong Area, Tarim Basin, China. Energy & Fuels, 33(2): 968-978. https://doi.org/10.1021/acs.energyfuels.8b03931
      Zhu, G. Y., Huang, H. P., Wang, H. T., 2015. Geochemical Significance of Discovery in Cambrian Reservoirs at Well ZS1 of the Tarim Basin, Northwest China. Energy & Fuels, 29(3): 1332-1344. https://doi.org/10.1021/ef502345n
      Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-Buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69: 1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007
      Zhu, G. Y., Wang, M., Zhang, Y., et al., 2018a. Low-Molecular-Weight Organic Polysulfanes in Petroleum. Energy & Fuels, 32(6): 6770-6773. https://doi.org/10.1021/acs.energyfuels.8b01292
      Zhu, G. Y., Zhang, Y., Wang, M., et al., 2018b. Discovery of High-Abundance Diamondoids and Thiadiamondoids and Severe TSR Alteration of Well ZS1C Condensate, Tarim Basin, China. Energy & Fuels, 32(7): 7383-7392. https://doi.org/10.1021/acs.energyfuels.8b00908
      Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018c. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123: 136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003
      Zhu, G. Y., Wang, P., Wang, M., et al., 2019a. Occurrence and Origins of Thiols in Deep Strata Crude Oils, Tarim Basin, China. ACS Earth and Space Chemistry, 3(11): 2499-2509. https://doi.org/10.1021/acsearthspacechem.9b00070
      Zhu, G. Y., Zhang, Y., Zhou, X. X., et al., 2019b. TSR, Deep Oil Cracking and Exploration Potential in the Hetianhe Gas Field, Tarim Basin, China. Fuel, 236: 1078-1092. https://doi.org/10.1016/j.fuel.2018.08.119
      Zhu, G. Y., Zhang, Z. Y., Milkov, A. V., et al., 2019c. Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs: Example from the Tazhong Area, Tarim Basin, China. Fuel, 253: 998-1017. https://doi.org/10.1016/j.fuel.2019.05.030
      Zhu, G. Y., Zhang, Z. Y., Zhou, X. X., et al., 2019d. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930
      Zhu, G. Y., Li, J. F., Zhang, Z. Y., 2021. Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin. Earth Science, 1-17. (2021-11-09). https://kns.cnkiet/kcms/detail/42.1874.P.20211108.1622.004.html(in Chinese with English abstract).
      陈中红, 张平, 柴智, 等, 2020. 原油中硫代金刚烷的分析鉴定和地球化学应用. 地球科学与环境学报, 42 (2): 143-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202002002.htm
      房忱琛, 翟佳, 胡国艺, 等, 2021. 凝析油中金刚烷类和硫代金刚烷类化合物同步检测方法及地质意义——以塔里木盆地塔中地区凝析油为例. 石油实验地质, 43 (5): 906-914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105021.htm
      姜乃煌, 朱光有, 张水昌, 等, 2007. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义. 科学通报, 52 (24): 2871-2875. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200724010.htm
      李开开, 蔡春芳, 蔡镏璐, 等, 2012. 塔河地区中下奥陶统储层硫化物成因分析. 岩石学报, 28 (3): 806-814. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203010.htm
      李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46 (8): 2819-2831. doi: 10.3799/dqkx.2020.197
      马安来, 朱翠山, 顾忆, 等, 2018b. 塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析. 天然气地球科学, 188 (7): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807011.htm
      马安来, 金之钧, 朱翠山, 等, 2018c. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义. 中国科学: 地球科学, 48: 1312-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201810004.htm
      马安来, 金之钧, 朱翠山, 等, 2018d. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据. 石油与天然气地质, 39 (0): 730-737, 748. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804011.htm
      袁余洋, 汪天凯, 蔡春芳, 等, 2020. 塔中地区原油含硫化合物类型与TSR成因关系. 西南石油大学学报(自然科学版), 42 (2): 48-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202002005.htm
      朱光有, 李婧菲; 张志遥, 2021. 深层油气相态多样性成因与次生地球化学作用强度评价——以塔里木盆地海相油气为例. 地球科学, https://kns.cnkiet/kcms/detail/42.1874.P.20211108.1622.004.html
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (952) PDF downloads(78) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return