• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Ma Changqian, Zou Bowen, Huang Guizhi, 2022. Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering. Earth Science, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415
    Citation: Ma Changqian, Zou Bowen, Huang Guizhi, 2022. Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering. Earth Science, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415

    Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering

    doi: 10.3799/dqkx.2022.415
    • Received Date: 2022-08-29
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • Volcanoes are the link connecting the Earth's interior and surface systems and are seen as a sign of the vitality of the Earth. Mitigating the impact of large volcanic eruptions on Earth's climate and environment is a major topic in geosciences. In this paper we propose that in order to reduce the negative impact of volcanic disasters on all human beings, it is necessary to explore the incremental assembly and evolution of magma reservoirs, study the triggering mechanism of volcanic eruptions, focus on the interaction between the inner and outer layers of the Earth, and understand the feedback relationship between volcanic activity and global climate and surface environmental changes, and construct the theoretical system and technical framework of volcano geoengineering. Among them, the study of magma plumbing systems based on magma dynamics and volcanology will provide a new theoretical basis for the prediction and monitoring of volcanic activities. The influence of volcanic activity is global. Therefore, it must seize the opportunity to make progress in deepening the theoretical research on the mechanism of volcanic eruption and building an engineering technology system to reduce the impact of volcanic disasters.

       

    • loading
    • Aubry, T. J., Farquharson, J. I., Rowell, C. R., et al., 2022. Impact of Climate Change on Volcanic Processes: Current Understanding and Future Challenges. Bulletin of Volcanology, 84(6): 1-11. https://doi.org/10.1007/s00445-022-01562-8
      Bachmann, O., Huber, C., 2018. The Inner Workings of Crustal Distillation Columns: The Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs. Journal of Petrology, 60(1): 3-18. https://doi.org/10.1093/petrology/egy103
      Caricchi, L., Townsend, M., Rivalta, E., et al., 2021. The Build-up and Triggers of Volcanic Eruptions. Nature Reviews Earth & Environment, 2: 458-476.
      Carter, L. C., Williamson, B. J., Tapster, S. R., et al., 2021. Crystal Mush Dykes as Conduits for Mineralising Fluids in the Yerington Porphyry Copper District, Nevada. Communications Earth & Environment, 2(1): 1-11.
      Cassidy, M., Mani, L., 2022. Prepare Now for Big Eruptions. Nature, 608: 469-471. https://doi.org/10.1038/d41586-022-02177-x
      Degruyter, W., Huber, C., Bachmann, O., et al., 2017. Influence of Exsolved Volatiles on Reheating Silicic Magmas by Recharge and Consequences for Eruptive Style at Volcán Quizapu (Chile). Geochemistry, Geophysics, Geosystems, 11(18): 4123-4135.
      Di Genova, D., Kolzenburg, S., Wiesmaier, S., et al., 2017. A Compositional Tipping Point Governing the Mobilization and Eruption Style of Rhyolitic Magma. Nature, 552(7684): 235-238. doi: 10.1038/nature24488
      Dufek, J., Bachmann, O., 2010. Quantum Magmatism: Magmatic Compositional Gaps Generated by Melt- Crystal Dynamics. Geology, 38: 687-690.
      Eichelberger, J., 2019. Planning an International Magma Observatory. EOS, 100. https://doi.org/10.1029/2019EO125255
      Felgenhauer, T., Bala, G., Borsuk, M., et al., 2022. Solar Radiation Modification: A Risk-Risk Analysis. Carnegie Climate Governance Initiative (C2G), New York.
      Garibaldi, N., Tikoff, B., Schaen, A. J., et al., 2018. Interpreting Granitic Fabrics in Terms of Rhyolitic Melt Segregation, Accumulation, and Escape via Tectonic Filter Pressing in the Huemul Pluton, Chile Nicolas. Journal of Geophysics Research: Solid Earth, 10(123): 8548-8567.
      Gernon, T. M., Hincks, T. K., Merdith, A. S., et al., 2021. Global Chemical Weathering Dominated by Continental Arcs since the Mid-Palaeozoic. Nature Geoscience, 14(9): 690-696. doi: 10.1038/s41561-021-00806-0
      Green, T., Renne, P. R., Keller, C. B., 2022. Continental Flood Basalts Drive Phanerozoic Extinctions. Proceedings of the National Academy of Sciences, 119(38): e2120441119. https://doi.org/10.1073/pnas.2120441119
      Gudmundsson, M. T., Jonsdottir, K., Hooper, A., et al., 2016. Gradual Caldera Collapse at Bárdarbunga Volcano, Iceland, Regulated by Lateral Magma Outflow. Science, 353 (6296): aaf8988. doi: 10.1126/science.aaf8988
      Hartung, E., Weber, G., Caricchi, L., 2019. The Role of H2O on the Extraction of Melt from Crystallising Magmas. Earth and Planetary Science Letters, 508: 85-96. doi: 10.1016/j.epsl.2018.12.010
      Humphreys, M. C., Smith, V. C., Coumans, J. P., et al., 2021. Rapid Pre-Eruptive Mush Reorganisation and Atmospheric Volatile Emissions from the 12.9 ka Laacher See Eruption, Determined Using Apatite. Earth and Planetary Science Letters, 576: 117198. doi: 10.1016/j.epsl.2021.117198
      Irvine, P. J., Kravitz, B., Lawrence, M. G., et al., 2016. An Overview of the Earth System Science of Solar Geoengineering. WIREs Climate Change, 7: 815-833. https://doi.org/10.1002/wcc.423
      Langhammer, D., Di Genova, D., Steinle-Neumann, G., 2021. Modeling the Viscosity of Anhydrous and Hydrous Volcanic Melts. Geochemistry, Geophysics, Geosystems, 22(8): e2021GC009918.
      Lin, J., Svensson, A., Hvidberg, C. S., et al., 2022. Magnitude, Frequency and Climate Forcing of Global Volcanism during the Last Glacial Period as Seen in Greenland and Antarctic Ice Cores (60-9 ka). Clim. Past, 18: 485-506. doi: 10.5194/cp-18-485-2022
      Liu, F., Xing, C., Li, J. B., et al., 2020. Could the Recent Taal Volcano Eruption Trigger an El Niño and Lead to Eurasian Warming? Advances in Atmospheric Sciences, 37(7): 663-670. https://doi.org/10.1007/s00376-020-2041-z
      Lockwood, J. P. Hazlett, R. W., 2010. Volcanoes: Global Perspectives. Wiley-Blackwell, Hoboken.
      Lucas, L. C., Albright, J. A., Gregg, P. M., et al., 2022. The Impact of Ice Caps on the Mechanical Stability of Magmatic Systems: Implications for Forecasting on Human Timescales. Frontiers in Earth Science, 10: 868569. https://doi.org/10.3389/feart.2022.868569
      Ma, C. Q., Zou, B. W., Gao, K., et al., 2020. Crystal Mush Storage, Incremental Pluton Assembly and Granitic Petrogenesis. Earth Science, 45(12): 4332-4351 (in Chinese with English abstract).
      Marshall, L. R., Maters, E. C., Schmidt, A., et al., 2022. Volcanic Effects on Climate: Recent Advances and Future Avenues. Bulletin of Volcanology, 84(5): 1-14. https://doi.org/10.1007/s00445-022-01559-3
      Millán, L., Santee, M. L., Lambert, A., et al., 2022. The Hunga Tonga-Hunga Ha'apai Hydration of the Stratosphere. Geophysical Research Letters, 49(13): e2022GL099381. https://doi.org/10.1029/2022gl099381
      Parmigiani, A., Faroughi, S., Huber, C., et al., 2016. Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 532(7600): 492-495. https://doi.org/10.1038/nature17401
      Pistone, M., Blundy, J., Brooker, R. A., et al., 2017. Water Transfer during Magma Mixing Events: Insights into Crystal Mush Rejuvenation and Melt Extraction Processes. American Mineralogist, 102: 766-776. doi: 10.2138/am-2017-5793
      Poli, P., Shapiro, N. M., 2022. Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Explosion from Teleseismic Waves. Geophysical Research Letters, 49(8): e2022GL098123. https://doi.org/10.1029/2022GL098123
      Racki, G., 2020. Volcanism as a Prime Cause of Mass Extinctions: Retrospectives and Perspectives. In Mass Extinctions, Volcanism, and Impacts: New Developments. Geological Society of America Special Paper, 544: 1-34.
      Rasmussen, D. J., Plank, T. A., Roman, D. C., et al., 2022. Magmatic Water Content Controls the Pre- Eruptive Depth of Arc Magmas. Science, 375(6585): 1169-1172. https://doi.org/10.1126/science.abm5174
      Reynolds, J. L., 2019. Solar Geoengineering to Reduce Climate Change: A Review of Governance Proposals. Proceedings Mathematical, Physical, and Engineering Sciences, 475(2229): 20190255. https://doi.org/10.1098/rspa.2019.0255
      Ruprecht, P., Bachmann, O., 2010. Pre-Eruptive Reheating during Magma Mixing at Quizapu Volcano and the Implications for the Explosiveness of Silicic Arc Volcanoes. Geology, 38(10): 919-922. doi: 10.1130/G31110.1
      Satow, C., Gudmundsson, A., Gertisser, R., et al., 2021. Eruptive Activity of the Santorini Volcano Controlled by Sea-Level Rise and Fall. Nature Geoscience, 14: 586-592. https://doi.org/10.1038/s41561-021-00783-4
      Sigl, M., Toohey, M., McConnel, J. R., et al., 2022. Volcanic Stratospheric Sulfur Injections and Aerosol Optical Depth during the Holocene (Past 11 500 Years) from a Bipolar Ice-Core Array. Earth System Science Data, 14: 3167-3196. https://doi.org/10.5194/essd-14-3167-2022
      Sigmundsson, F., Hreinsdóttir, S., Hooper, A., et al., 2010. Intrusion Triggering of the 2010 Eyjafjallajökull Explosive Eruption. Nature, 468(7322): 426-430. https://doi.org/10.1038/nature09558
      Sliwinski, J. T., Bachmann, O., Dungan, M. A., et al., 2017. Rapid Pre-Eruptive Thermal Rejuvenation in a Large Silicic Magma Body: The Case of the Masonic Park Tuff, Southern Rocky Mountain Volcanic Field, CO, USA. Contributions to Mineralogy and Petrology, 172(5): 1-20. https://doi.org/10.1007/s00410-017-1351-3
      Tian, J. J., Ding, F., Hao, S. L., et al., 2021. Petrogenesis of Acidic Volcanic Rocks in Sangxiu Formation, East-Central Segment of Tethyan-Himalaya: Response to Break-up of Eastern Gondwana Continent?. Earth Science, 46(11): 3926-3944 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.363
      Toohey, M., Krüger, K., Schmidt, H., et al., 2019. Disproportionately Strong Climate Forcing from Extratropical Explosive Volcanic Eruptions. Nature Geoscience, 12(2): 100-107. https://doi.org/10.1038/s41561-018-0286-2
      Tuffen, H., 2010. How Will Melting of Ice Affect Volcanic Hazards in the Twenty-First Century? Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 368(1919): 2535-2558. https://doi.org/10.1098/rsta.2010.0063
      Utami, S. B., Costa, F., Lesage, P., et al., 2021. Fluid Fluxing and Accumulation Drive Decadal and Short-Lived Explosive Basaltic Andesite Eruptions Preceded by Limited Volcanic Unrest. Journal of Petrology, 62(11): egab086. https://doi.org/10.1093/petrology/egab086
      Wirakusumah, A. D., Rachmat, H., 2017. Impact of the 1815 Tambora Eruption to Global Climate Change. IOP Conf. Series: Earth and Environmental Science, 71: 012007. https://doi.org/10.1088/1755-1315/71/1/012007
      Zhou, X. Y., Zhang, Y. X., Zhang, J. H., et al., 2021. Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma. Earth Science, 46(2): 474-488 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.073
      Zuo, M., Zhou, T., Man, W., et al., 2022. Volcanoes and Climate: Sizing up the Impact of the Recent Hunga Tonga-Hunga Ha'apai Volcanic Eruption from a Historical Perspective. Advances in Atmospheric Sciences. https://org.doi/10.1007/s00376-022-2034-1 doi: 10.1007/s00376-022-2034-1
      马昌前, 邹博文, 高珂, 等, 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351. doi: 10.3799/dqkx.2020.316
      田京京, 丁枫, 郝盛蓝, 等, 2021. 特提斯喜马拉雅中东部桑秀组酸性火山岩岩石成因: 东冈瓦纳大陆裂解的响应?. 地球科学, 46(11): 3926-3944. doi: 10.3799/dqkx.2020.363
      周逍遥, 张玉修, 张吉衡, 等, 2021. 拉萨地体中部古新世早期灯垌火山‒侵入杂岩成因及地壳硅质岩浆演化. 地球科学, 46(2): 474-488. doi: 10.3799/dqkx.2019.073
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)

      Article views (1850) PDF downloads(222) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return