• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Xi Yuanyuan, Wang Yongmao, Lu Bibo, Xing Zhifeng, Hou Guangshun, 2024. Fusulinid Detection Based on Deep Learning Single-Stage Algorithm. Earth Science, 49(3): 1154-1164. doi: 10.3799/dqkx.2022.427
    Citation: Xi Yuanyuan, Wang Yongmao, Lu Bibo, Xing Zhifeng, Hou Guangshun, 2024. Fusulinid Detection Based on Deep Learning Single-Stage Algorithm. Earth Science, 49(3): 1154-1164. doi: 10.3799/dqkx.2022.427

    Fusulinid Detection Based on Deep Learning Single-Stage Algorithm

    doi: 10.3799/dqkx.2022.427
    • Received Date: 2022-06-13
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • Fusulinids are important standard fossils of the Carboniferous and Permian periods. The identification of fusulinids is significant for determining the geological age and delineating the Carboniferous-Permian stratigraphy. Considering the limitations of current fossil detection methods, a fusulinid detection method based on a deep learning single-stage algorithm is proposed. Taking fusulinids as the research object, the original model is improved by channel pruning by jointly optimizing the weight loss function and L1 regularization of the BN layer scale factor to compress the model size. Furthermore, the knowledge distillation is utilized to restore the detection performance of the pruned model. The experimental results show that the method can achieve the classification and localization of the fusulinids in the thin section images. The average accuracy reaches 98.1%, which meets the requirements of the real-time detection model. In addition, the number of model parameters is reduced by 74.1%, which solves the problems such as the lack of arithmetic power existing in real scenes. The method can effectively achieve the detection of fusulinids, while extending the applicability of the model to embedded devices and providing more possibilities for deep learning to perform intelligent recognition in paleontological fossil images.

       

    • loading
    • Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. ArXiv, 2004.10934. https://arxiv.org/abs/2004.10934
      Bu, J. J., He, W. H., Zhang, K. X., et al., 2020. Evolution of the Paleo-Asian Ocean: Evidences from Paleontology and Stratigraphy. Earth Science, 45(3): 711-727 (in Chinese with English abstract).
      Denil, M., Shakibi, B., Dinh, L., et al., 2013. Predicting Parameters in Deep Learning. ArXiv, 1306.0543. https://doi.org/10.48550/arXiv.1306.0543
      Du, Y. S., Tong, J. N., 2009. Introduction to Palaeontology and Historical Geology. China University of Geosciences Press, Wuhan (in Chinese).
      Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV). Santiago. https://doi.org/10.1109/ICCV.2015.169
      Girshick, R., Donahue, J., Darrell, T., et al., 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus. https://doi.org/10.1109/CVPR.2014.81
      Guo, W., Lin, Y. T., Liu, G. H., 2003. Early Permian Rugose Coral Assemblage and Its Geological Significances in Xiwuqi of Inner Mongolia. Journal of Jilin University (Earth Science Edition), 33(4): 399-405 (in Chinese with English abstract).
      He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas. https://doi.org/10.1109/CVPR.2016.90
      Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the Knowledge in a Neural Network. ArXiv, 1503.02531. https://doi.org/10.48550/arXiv.1503.02531
      Hou, X. H., Feng, L., Zheng, M. P., et al., 2022. Recognition Method of Potassium-Rich Lithium Brine Reservoir in Nanyishan. Earth Science, 47(1): 45-55 (in Chinese with English abstract).
      Huang, Z., Bai, Z. Q., Chai, H., 2009. Identification of the 'Ambiguity Features' of the Conodont by the Artificial Neural Network. Geological Science and Technology Information, 28(3): 94-98 (in Chinese with English abstract).
      Li, P. F., Wang, H., Wu, Y. C., et al., 2022. Recognition of Dangerous Rock Mass and Seismic Risk Analysis of Highway Based on UAV Images. China Earthquake Engineering Journal, 44(4): 777-785 (in Chinese with English abstract).
      Liu, W., Anguelov, D., Erhan, D., et al., 2016. Ssd: Single Shot MultiBox Detector. 2016 European Conference on Computer Vision, Amsterdam. https://doi.org/10.1007/978-3-319-46448-0_2
      Liu, X. Y., 2018. The Application of Image Recognition Technology in Paleontological Fossil Image (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Liu, Z., Li, J. G., Shen, Z. Q., et al., 2017. Learning Efficient Convolutional Networks through Network Slimming. 2017 IEEE International Conference on Computer Vision (ICCV). Venice. https://doi.org/10.1109/ICCV.2017.298
      Lowe, D. G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
      Mehta, R., Ozturk, C., 2018. Object Detection at 200 Frames Per Second. ArXiv, 1805.06361. https://doi.org/10.48550/arXiv.1805.06361
      Peng, X. D., Zhang, M. S., Li, X. M., 1999. The Evolution of Paleozoic Tectonic Paleogeography in Jilin and Heilongjiang Orogenic Belt. World Geology, 18(3): 24-28 (in Chinese).
      Redmon, J., Divvala, S., Girshick, R., et al., 2016. You only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas. https://doi.org/10.1109/CVPR.2016.91
      Redmon, J., Farhadi, A., 2018. Yolov3: An Incremental Improvement. arXiv, 1804.02767. https://doi.org/10.48550/arXiv.1804.02767
      Ren, S. Q., He, K. M., Girshick, R., et al., 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv, 1506.01497. https://doi.org/10.48550/arXiv.1506.01497
      Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019. Permian Integrative Stratigraphy and Timescale of China. Science in China (Series D), 49(1): 160-193 (in Chinese).
      Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Visual Recognition. ArXiv, 1409.1556. https://doi.org/10.48550/arXiv.1409.1556
      Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)., Boston. https://doi.org/10.1109/CVPR.2015.7298594
      Weller, A. F., Harris, A. J., Ware, J. A., 2006. Artificial Neural Networks as Potential Classification Tools for Dinoflagellate Cyst Images: A Case Using the Self- Organizing Map Clustering Algorithm. Review of Palaeobotany and Palynology, 141(3-4): 287-302. https://doi.org/10.1016/j.revpalbo.2006.06.001
      Yu, X. L., Ye, K., Du, C. J., et al., 2021. Microscopic Recognition of Micro Fossils in Carbonate Rocks Based on Convolutional Neural Network. Petroleum Geology & Experiment, 43(5): 880-885, 895 (in Chinese with English abstract).
      Yue, X., Hu, H., Jia, J. Z., 2019. A Method for Identifying Foraminifera Fossils Based on Deep Learning. Computer Knowledge and Technology, 15(27): 173, 178 (in Chinese).
      Zhang, Z. C., 1987. Correlation of the Shanxi Stage in North China and Related Fusulinid-Bearing Strata in Certain Areas. Regional Geology of China, 6(4): 359-363 (in Chinese).
      Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
      卜建军, 何卫红, 张克信, 等, 2020. 古亚洲洋的演化: 来自古生物地层学方面的证据. 地球科学, 45(3): 711-727. doi: 10.3799/dqkx.2019.068
      杜远生, 童金南, 2009. 古生物地史学概论. 武汉: 中国地质大学出版社.
      郭伟, 林英铴, 刘广虎, 2003. 内蒙古西乌旗地区早二叠世皱纹珊瑚化石组合及其地质意义. 吉林大学学报(地球科学版), 33(4): 399-405. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200304002.htm
      侯献华, 冯磊, 郑绵平, 等, 2022. 南翼山富钾锂卤水储层识别方法. 地球科学, 47(1): 45-55. doi: 10.3799/dqkx.2021.123
      黄铮, 白志强, 柴华, 2009. 利用人工神经网络方法对牙形石鉴定中若干"模糊特征" 的数字化研究. 地质科技情报, 28(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200903017.htm
      李培锋, 王晖, 吴雨辰, 等, 2022. 基于无人机影像的危岩体识别及公路地震风险研究. 地震工程学报, 44(4): 777-785. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202204004.htm
      刘曦阳, 2018. 图像识别技术在古生物化石图像上的应用(硕士学位论文). 长春: 吉林大学.
      彭向东, 张梅生, 李晓敏, 1999. 吉黑造山带古生代构造古地理演化. 世界地质, 18(3): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199903004.htm
      沈树忠, 张华, 张以春, 等, 2019. 中国二叠纪综合地层和时间框架. 中国科学(D辑), 49(1): 160-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901009.htm
      余晓露, 叶恺, 杜崇娇, 等, 2021. 基于卷积神经网络的碳酸盐岩生物化石显微图像识别. 石油实验地质, 43(5): 880-885, 895. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105018.htm
      岳翔, 呼和, 贾建忠, 2019. 一种基于深度学习的有孔虫化石识别方法. 电脑知识与技术, 15(27): 173, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201927076.htm
      张志存, 1987. 华北山西阶与有关含(竹蜓)地层之对比. 中国区域地质, 6(4): 359-363. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198704008.htm
      左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(5)

      Article views (192) PDF downloads(17) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return