• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Fu Jinming, Hu Maosheng, Fang Fang, Chu Deping, Li Hong, Wan Bo, 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176. doi: 10.3799/dqkx.2022.433
    Citation: Fu Jinming, Hu Maosheng, Fang Fang, Chu Deping, Li Hong, Wan Bo, 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176. doi: 10.3799/dqkx.2022.433

    Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy

    doi: 10.3799/dqkx.2022.433
    • Received Date: 2022-05-13
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • Establishing a 3D orebody model is the foundation of digital mine and smart mine. In response to the phenomenon that the classical radial basis function surface reconstruction algorithm leads to surface boundary self-fitting and model discontinuity when the original data is sparse, this paper proposes a method of implicit automatic modeling of complex orebody with radial basis function incorporating multiple machine learning. This method uses the Stacking model to learn the distribution characteristics of the discrete point cloud data of the orebody contour lines to build a directed point set characterizing the geometric information of the orebody model. On this basis, the boundary points and normal vectors are extracted, the implicit field is established by the Hermite radial basis function, and finally the 3D orebody model is visualized based on the marching tetrahedron algorithm. The analysis was compared with the contour line splicing method, the classical radial basis function surface reconstruction algorithm, and the simple kriging interpolation method. The method can effectively reduce the phenomenon of self-fitting of surface boundaries, reduce redundant holes in the model, and improve the continuity of the model; the similarity between the contour lines cut by the established model and the original contour lines reaches 75.14%, which is comparable to the explicit model with a high degree of manual intervention; the gap between the model and the explicit model in volume characterization reaches the lowest.

       

    • loading
    • Apel, M., 2006. From 3D Geomodelling Systems towards 3D Geoscience Information Systems: Data Model, Query Functionality, and Data Management. Computers & Geosciences, 32(2): 222-229. https://doi.org/10.1016/j.cageo.2005.06.016
      Bi, L., Zhao, H., Li, Y. L., 2018. Automatic 3D Orebody Modeling Based on Biased-SVM and Poisson Surface. Journal of China University of Mining & Technology, 47(5): 1123-1130 (in Chinese with English abstract).
      Calcagno, P., Chilès, J. P., Courrioux, G., et al., 2008. Geological Modelling from Field Data and Geological Knowledge. Physics of the Earth and Planetary Interiors, 171(1-4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
      Chen, T. Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco.
      Feito, F., Torres, J. C., Ureña, A., 1995. Orientation, Simplicity, and Inclusion Test for Planar Polygons. Computers & Graphics, 19(4): 595-600. https://doi.org/10.1016/0097-8493(95)00037-D
      Feng, C., Pan, J. G., Li, C., et al., 2023. Fault High-Resolution Recognition Method Based on Deep Neural Network. Earth Science, 48(8): 3044-3052 (in Chinese with English abstract).
      Geng, R. R., Fan, H. H., Sun, Y. Q., et al., 2020. 3D Quantitative Prediction of Shazijiang Uranium Deposit Based on GOCAD Software. Mineral Deposits, 39(6): 1078-1090 (in Chinese with English abstract).
      Guo, J. T., Liu, Y. H., Han, Y. F., et al., 2019. Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University (Natural Science), 40(9): 1337-1342 (in Chinese with English abstract).
      Guo, J. T., Wang, J. M., Wu, L. X., et al., 2020. Explicit-Implicit-Integrated 3-D Geological Modelling Approach: A Case Study of the Xianyan Demolition Volcano (Fujian, China). Tectonophysics, 795: 228648. https://doi.org/10.1016/j.tecto.2020.228648
      Guo, J. T., Wu, L. X., Zhou, W. H., 2016. Automatic Ore Body Implicit 3D Modeling Based on Radial Basis Function Surface. Journal of China Coal Society, 41(8): 2130-2135 (in Chinese with English abstract).
      Huang, C., Lang, X. H., Lou, Y. M., et al., 2021. 3D Geological Modeling and Deep Visualization Application of Xiongcun No. Ⅰ Orebody, Tibet. Geological Bulletin of China, 40(5): 753-763 (in Chinese with English abstract).
      Jia, R., Lü, Y. K., Wang, G. W., et al., 2021. A Stacking Methodology of Machine Learning for 3D Geological Modeling with Geological-Geophysical Datasets, Laochang Sn Camp, Gejiu (China). Computers & Geosciences, 151: 104754. https://doi.org/10.1016/j.cageo.2021.104754
      Li, F. S., Li, X. J., Chen, W. T., et al., 2022. Automatic Lithology Classification Based on Deep Features Using Dual Polarization SAR Images. Earth Science, 47(11): 4267-4279 (in Chinese with English abstract).
      Li, X. J., Hu, J. H., Zhu, H. H., et al., 2008. The Estimation of Coal Thickness Based on Kriging Technique and 3D Coal Seam Modeling. Journal of China Coal Society, 33(7): 765-769 (in Chinese with English abstract).
      Li, Z. L., Wu, C. L., Zhang, X. L., et al., 2013. Dynamical Ore-Body Modeling by Property-Structure (P-S) Method. Earth Science, 38(6): 1331-1338 (in Chinese with English abstract).
      Liu, Z., Zhang, Z. L., Zhou, C. Y., et al., 2021. An Adaptive Inverse-Distance Weighting Interpolation Method Considering Spatial Differentiation in 3D Geological Modeling. Geosciences, 11(2): 51. https://doi.org/10.3390/geosciences11020051
      Macêdo, I., Gois, J. P., Velho, L., 2011. Hermite Radial Basis Functions Implicits. Computer Graphics Forum, 30(1): 27-42. https://doi.org/10.1111/j.1467-8659.2010.01785.x
      Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2012. Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research, 12: 2825-2830.
      Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., et al., 2015. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geology Reviews, 71: 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001
      Shi, T. D., Zhong, D. Y., Wang, L. G., 2021. Geological Modeling Method Based on the Normal Dynamic Estimation of Sparse Point Clouds. Mathematics, 9(15): 1819. https://doi.org/10.3390/math9151819
      Smirnoff, A., Boisvert, E., Paradis, S. J., 2008. Support Vector Machine for 3D Modelling from Sparse Geological Information of Various Origins. Computers & Geosciences, 34(2): 127-143. https://doi.org/10.1016/j.cageo.2006.12.008
      Sun, J., Zhang, R. J., Chen, M. Q., et al., 2021. Real-Time Updating Method of Local Geological Model Based on Logging while Drilling Process. Arabian Journal of Geosciences, 14(9): 1-17. https://doi.org/10.1007/s12517-021-07034-1
      Tai, W. X., Zhou, Q., Yang, C. F., et al., 2023. 3D Geological Visualization Modeling and Its Application in Zhexiang Gold Deposit, Southwest Guizhou Province. Earth Science, 48(11): 4017-4033 (in Chinese with English abstract).
      Wang, J. M., Zhao, H., Bi, L., et al., 2018a. Implicit 3D Modeling of Ore Body from Geological Boreholes Data Using Hermite Radial Basis Functions. Minerals, 8(10): 443. https://doi.org/10.3390/min8100443
      Wang, M., Yang, J. L., Wang, X., et al., 2023. Identification of Shale Lithofacies by Well Logs Based on Random Forest Algorithm. Earth Science, 48(1): 130-142 (in Chinese with English abstract).
      Wang, X. D., Yang, S. C., Zhao, Y. F., et al., 2018b. Lithology Identification Using an Optimized KNN Clustering Method Based on Entropy-Weighed Cosine Distance in Mesozoic Strata of Gaoqing Field, Jiyang Depression. Journal of Petroleum Science and Engineering, 166: 157-174. https://doi.org/10.1016/j.petrol.2018.03.034
      Wolpert, D. H., 1992. Stacked Generalization. Neural Networks, 5(2): 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1
      Wu, L. X., Wang, Y. J., Ding, E. J., et al., 2012. Thirdly Study on Digital Mine: Serve for Mine Safety and Intellimine with Support from IoT. Journal of China Coal Society, 37(3): 357-365 (in Chinese with English abstract).
      Xu, G., Wang, C. H., 2013. Complex Geological Object Visualization and Numerical Modeling for Wanjiakou Hydropower Station. Engineering Journal of Wuhan University, 46(4): 469-474 (in Chinese with English abstract).
      Xuan, W., Hua, X. H., Zou, J. G., et al., 2019. A New Method of Normal Estimation for Point Cloud Based on Adaptive Optimal Neighborhoods. Science of Surveying and Mapping, 44(10): 101-108, 116 (in Chinese with English abstract).
      Zhang, M. L., Zhou, Z. H., 2007. ML-KNN: A Lazy Learning Approach to Multi-Label Learning. Pattern Recognition, 40(7): 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019
      Zhang, Q. F., Wan, B., Cao, Z. X., et al., 2021. Exploring the Potential of Unmanned Aerial Vehicle (UAV) Remote Sensing for Mapping Plucking Area of Tea Plantations. Forests, 12(9): 1214. https://doi.org/10.3390/f12091214
      Zhang, S., Ding, E. J., Zhao, X. H., et al., 2007. Digital Mine and Constructing of Its Two Basic Platforms. Journal of China Coal Society, 32(9): 997-1001 (in Chinese with English abstract).
      Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      Zhong, D. Y., Wang, L. G., Bi, L., et al., 2019. Implicit Modeling of Complex Orebody with Constraints of Geological Rules. Transactions of Nonferrous Metals Society of China, 29(11): 2392-2399. https://doi.org/10.1016/S1003-6326(19)65145-9
      Zhou, J., Wang, G. H., Cui, Y. L., et al., 2017. Three-Dimensional Modeling of Orebody Morphology in the Anba Section of the Yangshan Gold Deposit Based on 3D Mine. Geology and Exploration, 53(2): 390-397 (in Chinese with English abstract).
      毕林, 赵辉, 李亚龙, 2018. 基于Biased-SVM和Poisson曲面矿体三维自动建模方法. 中国矿业大学学报, 47(5): 1123-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201805021.htm
      丰超, 潘建国, 李闯, 等, 2023. 基于深度神经网络的断层高分辨率识别方法. 地球科学, 48(8): 3044-3052. doi: 10.3799/dqkx.2022.276
      耿瑞瑞, 范洪海, 孙远强, 等, 2020. 基于GOCAD软件的沙子江铀矿床三维定量预测. 矿床地质, 39(6): 1078-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006008.htm
      郭甲腾, 刘寅贺, 韩英夫, 等, 2019. 基于机器学习的钻孔数据隐式三维地质建模方法. 东北大学学报(自然科学版), 40(9): 1337-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201909021.htm
      郭甲腾, 吴立新, 周文辉, 2016. 基于径向基函数曲面的矿体隐式自动三维建模方法. 煤炭学报, 41(8): 2130-2135. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201608034.htm
      黄超, 郎兴海, 娄渝明, 等, 2021. 西藏雄村Ⅰ号矿体三维地质建模与深部可视化应用. 地质通报, 40(5): 753-763. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202105010.htm
      李发森, 李显巨, 陈伟涛, 等, 2022. 基于深度特征的双极化SAR遥感图像岩性自动分类. 地球科学, 47(11): 4267-4279. doi: 10.3799/dqkx.2022.129
      李晓军, 胡金虎, 朱合华, 等, 2008. 基于Kriging方法的煤层厚度估计及三维煤层建模. 煤炭学报, 33(7): 765-769. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200807009.htm
      李章林, 吴冲龙, 张夏林, 等, 2013. 属性‒结构(P-S)矿体动态建模方法. 地球科学, 38(6): 1331-1338. doi: 10.3799/dqkx.2013.000
      邰文星, 周琦, 杨成富, 等, 2023. 黔西南者相金矿床三维地质可视化建模及应用. 地球科学, 48(11): 4017-4033. doi: 10.3799/dqkx.2022.095
      王民, 杨金路, 王鑫, 等, 2023. 基于随机森林算法的泥页岩岩相测井识别. 地球科学, 48(1): 130-142. doi: 10.3799/dqkx.2022.181
      吴立新, 汪云甲, 丁恩杰, 等, 2012. 三论数字矿山: 借力物联网保障矿山安全与智能采矿. 煤炭学报, 37(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203002.htm
      许国, 王长海, 2013. 万家口水电站复杂地质体三维模型及其数值模型构建. 武汉大学学报(工学版), 46(4): 469-474. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201304012.htm
      宣伟, 花向红, 邹进贵, 等, 2019. 自适应最优邻域尺寸选择的点云法向量估计方法. 测绘科学, 44(10): 101-108, 116. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201910015.htm
      张申, 丁恩杰, 赵小虎, 等, 2007. 数字矿山及其两大基础平台建设. 煤炭学报, 32(9): 997-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200709022.htm
      张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      周洁, 王根厚, 崔玉良, 等, 2017. 基于3D Mine的阳山金矿安坝矿段三维建模研究及矿体形态分析. 地质与勘探, 53(2): 390-397. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202401019.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(2)

      Article views (134) PDF downloads(15) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return