• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    Guan Yanhe, Zeng Renyu, Lai Jianqing, Mao Xiancheng, Su Hui, 2023. Late Paleoproterozoic Metamorphic-Anatexis Events and Their Tectonic Implications in Longshoushan Area, Alxa Block. Earth Science, 48(11): 4034-4052. doi: 10.3799/dqkx.2022.435
    Citation: Guan Yanhe, Zeng Renyu, Lai Jianqing, Mao Xiancheng, Su Hui, 2023. Late Paleoproterozoic Metamorphic-Anatexis Events and Their Tectonic Implications in Longshoushan Area, Alxa Block. Earth Science, 48(11): 4034-4052. doi: 10.3799/dqkx.2022.435

    Late Paleoproterozoic Metamorphic-Anatexis Events and Their Tectonic Implications in Longshoushan Area, Alxa Block

    doi: 10.3799/dqkx.2022.435
    • Received Date: 2022-08-16
      Available Online: 2023-11-30
    • Publish Date: 2023-11-25
    • The Alxa block is located in the southwestern margin of the North China craton. The Early Precambrian tectonic evolution and tectonic affinity of the block remain unknown or controversial, which restricts the study of the tectonic framework and evolution of the North China craton. The Longshoushan complex is one of the few Early Precambrian metamorphic basement rocks in the Alxa block, and records multiple Paleoproterozoic metamorphic events. Hence, which makes it possible to solve the above problems. It presents petrography, whole-rock geochemistry, and mineralogy, mineral geochemistry and chronology of zircon for the granitic pegmatite and zoisite amphibolite in the Longshoushan complex from the Jinchuan mining area in the central part of the Longshoushan area. The granitic pegmatite is characterized by SiO2 contents of 69.70%-73.08%, belongs to weak peraluminous and shoshonite series, and formed from low degree partial melting of crustal rocks during migmatisation. The intersection ages of 1 892±7 Ma (MSWD=0.76) were obtained from the core of zircon in granitic pegmatite, representing the formation age of the granitic pegmatite. The zoisite amphibolite is characterized by SiO2 contents of 41.51%-48.92%, and is the metamorphic product of tholeiitic diabase. Zircons in the zoisite amphibolite are amphibolite facies metamorphic zircons. The weighted average age of 1 830±8 Ma (MSWD=0.61) represents an amphibolite facies metamorphic event in the Longshoushan area. Combined with previous studies, there was a strong metamorphic-anatexis event in the Late Paleoproterozoic in the Longshoushan area, which is most likely related to a collisional orogeny. Through the comparison of tectonic-thermal events, it suggests that the Alxa block and the Khondalite belt of the North China craton have affinity in the Early Precambrian.

       

    • loading
    • Altherr, R., Holl, A., Hegner, E., et al., 2000. High- Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50: 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3
      Andersson, J., Möller, C., Johansson, L., 2002. Zircon Geochronology of Migmatite Gneisses along the Mylonite Zone (S Sweden): A Major Sveconorwegian Terrane Boundary in the Baltic Shield. Precambrian Research, 114(1-2): 121-147. https://doi.org/10.1016/S0301-9268(01)00220-0
      Ballouard, C., Branquet, Y., Tartese R., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(7): e395. https://doi.org/10.1130/G38169Y.1
      Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159
      Dan, W., Li, X. H., Guo, J. H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China: Evidence from In Situ Zircon U–Pb Dating and Hf–O Isotopes. Gondwana Research, 21(4): 838-864. https://doi.org/10.1016/j.gr.2011.09.004
      Dan, W., Li, X. H., Wang, Q., et al., 2014. Neoproterozoic S-Type Granites in the Alxa Block, Westernmost North China and Tectonic Implications: In Situ Zircon U-Pb- Hf-O Isotopic and Geochemical Constraints. American Journal of Science, 314(1): 110-153. https://doi.org/10.2475/01.2014.04
      Dan, W., Li, X. H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic Granitoids, U–Pb Geochronology and Sr–Nd–Pb–Hf–O Isotope Geochemistry. Gondwana Research, 32: 105-121. https://doi.org/10.1016/j.gr.2015.02.011
      Dong, C. Y., Liu, D. Y., Li, J. J., et al., 2007a. Palaeoproterozoic Khondalite Belt in the Western North China Craton: New Evidence from SHRIMP Dating and Hf Isotope Composition of Zircons from Metamorphic Rocks in the Bayan Ul-Helan Mountains Area. Chinese Science Bulletin, 52(21): 2984-2994. doi: 10.1007/s11434-007-0404-9
      Dong, G. A., Yang, H. Y., Liu, D. Y., 2007b. Detrital Zircon SHRIMP U-Pb Geochronology and Geological Significance of Longshoushan Group. Chinese Science Bulletin, 52(6): 688-697. doi: 10.1360/csb2007-52-6-688
      Douce, P. A. E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?. Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/GSL.SP.1999.168.01.05
      Gan, B. P., Diwu, C. R., Wang, B. L., et al., 2019. Geochronology and Geochemistry of the Paleoproterozoic Granites from the Helanshan Region: Contrains on the Formation and Evolution of Khodalite Belt in the Western North China Craton. Acta Petrologica Sinica, 35(8): 2325-2343 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.08.03
      Gao, M. D., Xu, H. J., Zhang, J. F., et al., 2018. Incipient Melt during Partial Melting of the Deeply Subducted Continental Crust: Evidence from Leucosome of Migmatite in Sulu Ultra-High Pressure Terrane. Acta Petrologica Sinica, 34(3): 547-566 (in Chinese with English abstract).
      Geng, Y. S., Wang, X. S., Shen, Q. H., et al., 2006. Redefinition of the Alxa Group-Complex (Precambrian Metamorphic Basement) in the Alxa Area, Inner Mongolia. Geology in China, 33(1): 138-145 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.01.015
      Geng, Y. S., Wang, X. S., Shen, Q. H., et al., 2007. Chronology of the Precambrian Metamorphic Series in the Alxa Area, Inner Mongolia. Geology in China, 34(2): 251-261 (in Chinese with English abstract).
      Gong, J. H., Zhang, J. X., Wang, Z. Q., et al., 2016. Origin of the Alxa Block, Western China: New Evidence from Zircon U-Pb Geochronology and Hf Isotopes of the Longshoushan Complex. Gondwana Research, 36: 359-375. https://doi.org/10.1016/j.gr.2015.06.014
      Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82. https://doi.org/141:66-82.10.1007/s004100000218
      Hollister, L. S., 1993. The Role of Melt in the Uplift and Exhumation of Orogenic Belts. Chemical Geology, 108(1-4): 31-48. https://doi.org/10.1016/0009-2541(93)90316-B
      Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793-834. https://doi.org/10.1093/petrology/egg112
      Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367-9120(03)00071-3
      LaFlèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chemical Geology, 148: 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3
      Li, J. J., Shen, B. F., Li, H. M., et al., 2004. Single- Zircon U-Pb Age of Granodioritic Gneiss in the Bayan UI Area, Western Inner Mongolia. Geological Bulletin of China, 23(12): 1243-1245 (in Chinese with English abstract).
      Li, J. Y., Qian, Y., Li, Y. J., et al., 2020. Highly Fractionated Granitic Pegmatite of Early Stage of Early Cretaceous in Liaodong Peninsula: Petrogenesis and Tectonic Setting. Earth Science, 45(11): 4054-4071 (in Chinese with English abstract).
      Liu, F., Robinson, P. T., Gerdes, A., et al., 2010. Zircon U–Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China: Constraints on the Timing and Nature of Partial Melting. Lithos, 117(1-4): 247-268. https://doi.org/10.1016/j.lithos.2010.03.002
      Liu, P. H., Tian, Z. H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216 (in Chinese with English abstract).
      Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~ 35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354. https://doi.org/10.1016/j.lithos.2015.11.026
      London, D., 2005. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 80(1-4): 281-303. https://doi.org/10.1016/j.lithos.2004.02.009
      Ma, L., Jiang, S. Y., Hou, M. L., 2014. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25: 859-872. https://doi.org/10.1016/j.gr.2013.05.012
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224.
      Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites, 8: 525-548.
      Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Newfoundland: Geological Association of Canada, 12: 79-113.
      Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5
      Qi, J. W., Zhang, S. M., Yang, C. S., et al., 2019. The LA-ICP-MS Zircon U-Pb Age of the Pegmatoidal Alaskite and Its Relationship with Uranium Mineralization in Hongshiquan Area, Gansu Province. Geological Bulletin of China, 38(4): 562-572 (in Chinese with English abstract).
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Santosh, M., Wan, Y. S., Liu, D. Y., 2009. Anatomy of Zircons from an Ultrahot Orogen: The Amalgamation of the North China Craton within the Supercontinent Columbia. The Journal of Geology, 117(4): 429-443. https://doi.org/10.1086/598949
      Sawyer, E. W., 2008. Working with Migmatites: Nomenclature for the Constituent Parts. In: Sawyer, E. W., ed., Working with Migmatites. Quebec City, Mineralogical Association of Canada, Quebec, 1-28.
      Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth and Planetary Science Letters, 228(1-2): 65-84. https://doi.org/10.1016/j.epsl.2004.09.020
      Shen, Q. H., Geng, Y. S., Wang, X. S., et al., 2004. Mineral Characteristics and Metamorphic P-T Condition of Precambrian Amphibolites in Alxa Region. Geological Survey and Research, 27(4): 209-216 (in Chinese with English abstract).
      Shen, Q. H., Geng, Y. S., Wang, X. S., et al., 2005. Petrology, Geochemistry, Formation Environment and Ages of Precambrian Amphibolites in Alxa Region. Acta Petrologica et Mineralogica, 24(1): 21-31 (in Chinese with English abstract).
      Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101-118. https://doi.org/10.1016/0012-821X(82)90120-0
      Su, H., Zeng, R. Y., Gan, D. B., et al., 2023. Petrogenesis and Tectonic Implications of Granite Porphyry in the Beidashan Area, Alxa Block: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Geoscience (in Chinese with English abstract).
      Sun, W. D., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, Z. L., 2002. Metallogenic System and Metallogenic Tectonic Dynamics in the Southwest Margin of North China Ancient Land (Longshoushan-Qilian Mountain). Geological Publishing House, Beijing (in Chinese with English abstract).
      Treuil, M., Joron, J. L., 1975. Utilisation des Elements Hygromagmatophiles Pour la Simplification de la Modélisation Quantitative des Processus Magmatiques: Exemples de l'Afar et de la Dorsale Médio-Atlantique. Soc. Ital. Mineral. Petrol. , 31: 125-174. https://doi.org/10.2113/gssgfbull.s7-xix.6.1197
      Vermeesch, P., 2006. Tectonic Discrimination Diagrams Revisited. Geochemistry, Geophysics, Geosystems, 7(6): 466-482. https://doi.org/10.1029/2005gc001092
      Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2009. The Precambrian Khondalite Belt in the Daqingshan Area, North China Craton: Evidence for Multiple Metamorphic Events in the Palaeoproterozoic Era. Geological Society, London, Special Publications, 323(1): 73-97. https://doi.org/10.1144/sp323.4
      Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (∼2.45, ∼1.95 and ∼1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U–Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224: 71-93. https://doi.org/10.1016/j.precamres.2012.09.014
      Wang, Q., 2014. Study on Metamorphism of Longshoushan Baijiazuizi Group (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
      Wu, F. Y., Liu, X. C., Ji W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 47(7): 745-765 (in Chinese).
      Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002
      Wu, Y. B., Zheng, Y. F., Zhang, S. B., et al., 2007. Zircon U–Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China: Constraints on Partial Melting. Journal of Metamorphic Geology, 25(9): 991-1009. https://doi.org/10.1111/j.1525-1314.2007.00738.x
      Xiu, Q. Y., Lu, S. N., Yu, H. F., et al., 2002. The Isotopic Age Evidence for Main Longshoushan Group Contributing to Palaeoproterozoic. Progess in Precambrian Research, 25(2): 93-96 (in Chinese with English abstract).
      Xiu, Q. Y., Yu, H. F., Li, Q., et al., 2004. Disscussion on the Petrogenic Time of Longshoushan Group, Gansu Province. Acta Geologica Sinica, 78(3): 366-373 (in Chinese with English abstract).
      Xu, W., Liu, F. l., Liu, C. H., 2017. Petrogenesis and Geochemical Characteristics of the North Liaohe Metabasic Rocks, Jiao-Liao-Ji Orogenic Belt and Their Tectonic Significance. Acta Petrologica Sinica, 33(9): 2743-2757 (in Chinese with English abstract).
      Yang, Q. Y., Santosh, M., Collins, A. S., et al., 2016. Microblock Amalgamation in the North China Craton: Evidence from Neoarchaean Magmatic Suite in the Western Margin of the Jiaoliao Block. Gondwana Research, 31: 96-123. https://doi.org/10.1016/j.gr.2015.04.002
      Yang, Z. Y., Yuan, W., Tong, Y. B., et al., 2014. Tectonic Affinity Reconnaissance of the Alxa Block in the Pre-Mesozoic. Acta Geoscientica Sinica, 35(6): 673-681 (in Chinese with English abstract).
      Yin, C. Q., Zhao, G. C., Guo, J. H., et al., 2011. U-Pb and Hf Isotopic Study of Zircons of the Helanshan Complex: Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38. https://doi.org/10.1016/j.lithos.2010.11.010
      Yu, S. Y., Zhang, J. X., Li, S. Z., et al., 2016. "Barrovian-Type" Metamorphism and In Situ Anatexis during Continental Collision: A Case Study from the South Altun Mountains, Western China. Acta Petrologica Sinica, 32(12): 3703-3714 (in Chinese with English abstract).
      Yu, Y., Li, Z. F., Bai, L. A., et al., 2022. Metallogenic Regularity and Prospecting Direction of Pegmatitic Rare-Metal Deposits in Western Yunnan. Acta Petrologica Sinica, 38(7): 2052-2066 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.14
      Yuan, W., Yang, Z. Y., 2015. The Alashan Terrane was not Part of North China by the Late Devonian: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 27(3): 1270-1282. https://doi.org/10.1016/j.gr.2013.12.009
      Zeng, R. Y., Lai, J. Q., Mao, X. C., et al., 2018. Paleoproterozoic Multiple Tectonothermal Events in the Longshoushan Area, Western North China Craton and Their Geological Implication: Evidence from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Minerals-Basel, 8(9): 361. https://doi.org/10.3390/min8090361
      Zeng, R. Y., Pan, J. Y., Su, H., et al., 2023. Geochronology and Genetic Mineralogy of Apatite and Zircon from the Huichang Pyroxene Diorite in Southern Jiangxi Province: Implications for Uranium Mineralization. Earth Science, 48(9): 3258-3279 (in Chinese with English abstract).
      Zhai, M. G., 2011. Craton and the Formation of North China Land Block. Science in China (Series D: Earth Sciences), 41(8): 1037-1046 (in Chinese).
      Zhai, M. G, Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview, Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhang, C. L., Gou, L. l., Diwu, C. R., et al., 2018. Early Precambrian Geological Events of the Basement in Western Block of North China Craton and Their Properties and Geological Significance. Acta Petrologica Sinica, 34(4): 981-998 (in Chinese with English abstract).
      Zhang, J. X., Gong, J. H., 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English abstract).
      Zhang, J. X., Gong, J. H., Yu, S. Y., et al., 2013. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication: Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235: 36-57. https://doi.org/10.1016/j.precamres.2013.05.002
      Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract).
      Zhao, G. C, Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      Zou, L., Guo, J. H., Jiao, S. J., et al., 2022. Paleoproterozoic Ultrahigh-Temperature Metamorphism in the Alxa Block, the Khondalite Belt, North China Craton: Petrology and Phase Equilibria of Quartz-Absent Corundum-Bearing Pelitic Granulites. J. Metamorph. Geol. , https://doi: 10.1111/jmg.12661
      Zou, L., Guo, J. H., Liu, L. S., et al., 2021. Palaeoproterozoic Granulite-Facies Metamorphism in the Eastern Alxa Block: New Petrological and Geochronological Evidence from the Diebusige Complex. Precambrian Research, 354(7-8): 106051. https://doi.org/10.1016/j.precamres.2020.106051
      甘保平, 第五春荣, 王伯隆, 等, 2019. 贺兰山古元古代花岗岩年代学及地球化学特征: 对华北克拉通西部孔兹岩带形成和演化的制约. 岩石学报, 35(8): 2325-2343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908003.htm
      高名迪, 续海金, 章军锋, 等, 2018. 深俯冲陆壳部分熔融初始熔体的厘定: 来自苏鲁超高压地体混合岩中浅色体证据. 岩石学报, 34(3): 547-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803002.htm
      耿元生, 王新社, 沈其韩, 等, 2006. 内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定. 中国地质, 33(1): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601014.htm
      耿元生, 王新社, 沈其韩, 等, 2007. 内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究. 中国地质, 34(2): 251-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702006.htm
      李俊建, 沈保丰, 李惠民, 等, 2004. 内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄. 地质通报, 23(12): 1243-1245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200412013.htm
      李锦毓, 钱烨, 李予晋, 等, 2020. 辽东半岛早白垩世早期高分异花岗伟晶岩成因与构造背景. 地球科学, 45(11): 4054-4071. doi: 10.3799/dqkx.2020.998
      刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228
      戚佳伟, 张树明, 杨春四, 等, 2019. 甘肃红石泉地区伟晶状白岗岩LA-ICP-MS锆石U-Pb年龄与铀成矿关系. 地质通报, 38(4): 562-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201904009.htm
      沈其韩, 耿元生, 王新社, 等, 2004. 阿拉善地区前寒武纪斜长角闪岩组成矿物特征及变质温压条件. 地质调查与研究, 27(4): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200404000.htm
      沈其韩, 耿元生, 王新社, 等, 2005. 阿拉善地区前寒武纪斜长角闪岩的岩石学、地球化学、形成环境和年代学. 岩石矿物学杂志, 24(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200501003.htm
      苏惠, 曾认宇, 甘德斌, 等, 2023. 阿拉善北大山地区花岗斑岩岩石成因及构造启示: 元素地球化学、锆石U-Pb年代学及Hf同位素约束. 现代地质.
      汤中立, 2002. 华北古陆西南缘(龙首山‒祁连山)成矿系统及成矿构造动力学. 北京: 地质出版社.
      王强, 2014. 龙首山群白家嘴子组变质作用研究(硕士学位论文). 西安: 长安大学.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm
      修群业, 陆松年, 于海峰, 等, 2002. 龙首山岩群主体划归古元古代的同位素年龄证据. 前寒武纪研究进展, 25(2): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200202004.htm
      修群业, 于海峰, 李铨, 等, 2004. 龙首山岩群成岩时代探讨. 地质学报, 78(3): 366-373. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200403009.htm
      许王, 刘福来, 刘超辉, 2017. 胶‒辽‒吉造山带北辽河变基性岩的成因、地球化学属性及其构造意义. 岩石学报, 33(9): 2743-2757. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709006.htm
      杨振宇, 袁伟, 仝亚博, 等, 2014. 阿拉善地块前中生代构造归属的新认识. 地球学报, 35(6): 673-681. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201406002.htm
      于胜尧, 张建新, 李三忠, 等, 2016. 大陆碰撞过程中的巴罗式变质作用及原地深熔作用: 以南阿尔金为例. 岩石学报, 32(12): 3703-3714. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612010.htm
      余勇, 李祖福, 白令安, 等, 2022. 滇西伟晶岩型稀有金属矿床成矿规律与找矿方向. 岩石学报, 38(7): 2052-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202207014.htm
      曾认宇, 潘家永, 苏惠, 等, 2023. 赣南会昌辉石闪长岩中磷灰石和锆石的年代学、成因矿物学及铀成矿指示意义. 地球科学, 48(9): 3258-3279. doi: 10.3799/dqkx.2022.127
      翟明国, 2011. 克拉通化与华北陆块的形成. 中国科学(D辑: 地球科学), 41(8): 1037-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108001.htm
      张成立, 苟龙龙, 第五春荣, 等, 2018. 华北克拉通西部基底早前寒武纪地质事件、性质及其地质意义. 岩石学报, 34(4): 981-998. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804010.htm
      张建新, 宫江华, 2018. 阿拉善地块性质和归属的再认识. 岩石学报, 34(4): 940-962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804008.htm
      赵国春, 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908006.htm
    • dqkxzx-48-11-4034-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (437) PDF downloads(66) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return