Citation: | Liu Yong, Li Xingrui, Zhan Weiwen, Li Bingchen, Guo Jingkai, Zhong Liang, 2023. State Affine Transfer Learning Method for Hydrodynamic Pressure-Driven Landslide. Earth Science, 48(5): 1793-1806. doi: 10.3799/dqkx.2022.439 |
Ai, X., Sun, B. T., Chen, X. Z., 2022. Construction of Small Sample Seismic Landslide Susceptibility Evaluation Model Based on Transfer Learning: A Case Study of Jiuzhaigou Earthquake. Bulletin of Engineering Geology and the Environment, 81(3): 81-116. doi: 10.1007/s10064-022-02601-6?utm_source=xmol&utm_content=meta
|
Fu, Z., Long, J., Chen, W., et al., 2021. Reliability of the Prediction Model for Landslide Displacement with Step⁃Like Behavior. Stochastic Environmental Research and Risk Assessment, 35(11): 2335-2353. doi: 10.1007/s00477-021-02029-6
|
Gao, D. X., Li, K., Cai, Y. C., et al., 2021. Predicting of Landslide Displacement Based on Time Series and Pso⁃Bp Model in Three Georges Reservoir, China. Journal of Earth Science: 1-17. https://doi.org/10.1007/s12583-021-1575-z
|
Guo, C., Xu, Q., Dong, X. J., et al., 2021. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science, 32(5): 1079-1091. doi: 10.1007/s12583-021-1467-2
|
Guo, J. W., Li, Y. S., Li, Z., et al., 2016. An Automatic Interpretation Model for Mountains Landslide Disaster of High⁃Resolution Remote Sensing Images Based on Transfer Learning. Journal of Geomatics Science and Technology, 33(5): 496-501 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JFJC201605011.htm
|
Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022. Logistic Regression Fitting of Rainfall⁃Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0169555X22001295
|
Huang, F. M., Yin, K. L., Yang, B. B., et al., 2018. Step⁃Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Science, 43(3): 887-898 (in Chinese with English abstract).
|
Li, L., Wu, Y., Miao, F., et al., 2021. A Hybrid Interval Displacement Forecasting Model for Reservoir Colluvial Landslides with Step⁃Like Deformation Characteristics Considering Dynamic Switching of Deformation States. Stochastic Environmental Research and Risk Assessment, 35: 1089-1112. doi: 10.1007/s00477-020-01914-w
|
Lian, C., Zhu, L., Zeng, Z., et al., 2018. Constructing Prediction Intervals for Landslide Displacement Using Bootstrapping Random Vector Functional Link Networks Selective Ensemble with Neural Networks Switched. Neurocomputing, 291: 1-10. doi: 10.1016/j.neucom.2018.02.046
|
Lin, Q. G., Liu, Y. Y., Liu, L. Y., et al., 2017. Earthquake⁃Triggered Landslide Susceptibility Assessment Based on Support Vector Machine Combined with Newmark Displacement Model. Journal of Geo⁃Information Science, 19(12): 1623-1633 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXX201712011.htm
|
Liu, P. Y., Chang, M., Wu, B. B., et al., 2022. Route Selection of Landslide Prone Area in Wenchuan Section of Chengdu⁃Wenchuan Expressway Based on SBAS⁃ InSAR. Earth Science, 47(6): 2048-2057 (in Chinese with English abstract).
|
Liu, Y., Hu, B. D., Chen, Z., 2019. A Similarity Measurement Method for Multiple Information Data of Landslide. Rock and Soil Mechanics, 40(10): 4001-4010 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201910036.htm
|
Liu, Y., Xu, C., Huang, B., et al., 2020. Landslide Displacement Prediction Based on Multi⁃Source Data Fusion and Sensitivity States. Engineering Geology, 271: 105608. doi: 10.1016/j.enggeo.2020.105608
|
Long, J., Li, C., Liu, Y., et al., 2022. A Multi⁃Feature Fusion Transfer Learning Method for Displacement Prediction of Rainfall Reservoir⁃Induced Landslide with Step⁃Like Deformation Characteristics. Engineering Geology, 297: 106494. doi: 10.1016/j.enggeo.2021.106494
|
Lu, H., Ma, L., Fu, X., et al., 2020. Landslides Information Extraction Using Object⁃Oriented Image Analysis Paradigm Based on Deep Learning and Transfer Learning. Remote Sensing, 12: 752. doi: 10.3390/rs12050752
|
Qin, S., Guo, X., Sun, J., et al., 2021. Landslide Detection from Open Satellite Imagery Using Distant Domain Transfer Learning. Remote Sensing, 13: 3383. doi: 10.3390/rs13173383
|
Rajakumar, R., 2021. One⁃Dimensional Quaternionic Special Affine Fourier Transform. Advances in Applied Clifford Algebras, 31(5): 13. doi: 10.1007/s00006-021-01174-z
|
Shi, K. Y., Zhang, D. X., Han, X. Q., et al., 2022. Digital Twin Model of Photovoltaic Power Generation Prediction Based on LSTM and Transfer Learning. Power System Technology, 46(4): 1363-1371 (in Chinese with English abstract).
|
Tsung, F., Zhang, K., Cheng, L. W., et al., 2018. Statistical Transfer Learning: A Review and Some Extensions to Statistical Process Control. Quality Engineering, 30(1): 115-128. https://doi.org/10.1080/08982112.2017.1373810
|
Xiao, T., 2020. Landslide Risk Assessment in Wanzhou District and a Key Section, Three Gorges Reservoir (Dissertation). China University of Geosciences, Wuhan, 146 (in Chinese with English abstract).
|
Xu, S. L., 2018. Study on Dynamic Landslide Susceptibility Mapping Based on Multi⁃Source Remote Sensing Imagery (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Yang, Y., Mei, G., 2021. Deep Transfer Learning Approach for Identifying Slope Surface Cracks. Applied Sciences, 11: 11193. doi: 10.3390/app112311193
|
Yao, Y., Zhang, Z. X., Ni, X., et al., 2022. Cgnet: Detecting Computer⁃Generated Images Based on Transfer Learning with Attention Module. Signal Processing: Image Communication, 105: 116692. doi: 10.1016/j.image.2022.116692
|
Yu, M. L., Mei, H. B., Li, J. H., et al., 2016. Landslide Displacement Prediction Based on Varying Coefficient Regression Model in Three Gorges Reservoir Area. Earth Science, 41(9): 1593-1602 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201609014.htm
|
Zhou, C., Yin, K., Cao, Y., et al., 2016. Application of Time Series Analysis and PSO⁃SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China. Engineering Geology, 204: 108-120. doi: 10.1016/j.enggeo.2016.02.009
|
Zou, Z., Yang, Y., Fan, Z., et al., 2020. Suitability of Data Preprocessing Methods for Landslide Displacement Forecasting. Stochastic Environmental Research and Risk Assessment, 34(8): 1105-1119. doi: 10.1007/s00477-020-01824-x
|
郭加伟, 李永树, 李政, 等, 2016. 迁移学习支持下的高分影像山地滑坡灾害解译模型. 测绘科学技术学报, 33(5): 496-501. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201605011.htm
|
黄发明, 陈佳武, 范宣梅, 等, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164
|
黄发明, 殷坤龙, 杨背背, 等, 2018. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测. 地球科学, 43(3): 887-898. doi: 10.3799/dqkx.2018.909
|
林齐根, 刘燕仪, 刘连友, 等, 2017. 支持向量机与Newmark模型结合的地震滑坡易发性评估研究. 地球信息科学学报, 19(12): 1623-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201712011.htm
|
刘沛源, 常鸣, 武彬彬, 等, 2022. 基于SBAS⁃InSAR技术的成汶高速汶川段滑坡易发区选线研究. 地球科学, 47(6): 2048-2057. doi: 10.3799/dqkx.2022.069
|
刘勇, 胡宝丹, 陈喆, 2019. 滑坡监测点多信息相似性度量方法研究. 岩土力学, 40(10): 4001-4010. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910036.htm
|
史凯钰, 张东霞, 韩肖清, 等, 2022. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型. 电网技术, 46(4): 1363-1371. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202204014.htm
|
肖婷, 2020. 三峡库区万州区及重点库岸段滑坡灾害风险评价(博士学位论文). 武汉: 中国地质大学.
|
许石罗, 2018. 基于多源遥感影像的动态滑坡灾害空间预测模型研究(博士学位论文). 武汉: 中国地质大学.
|
喻孟良, 梅红波, 李冀骅, 等, 2016. 基于变系数回归模型的三峡库区滑坡位移预测. 地球科学, 41(9): 1593-1602. doi: 10.3799/dqkx.2016.118
|