• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 2
    Feb.  2023
    Turn off MathJax
    Article Contents
    Li Bin, Zhao Xingxing, Wu Guanghui, Han Jianfa, Zhang Yingtao, Xie Zhou, 2023. Study on the Origin and Accumulation Model of Ordovician Multiphase Oil and Gas Reservoirs in South Tahe Area. Earth Science, 48(2): 657-672. doi: 10.3799/dqkx.2022.445
    Citation: Li Bin, Zhao Xingxing, Wu Guanghui, Han Jianfa, Zhang Yingtao, Xie Zhou, 2023. Study on the Origin and Accumulation Model of Ordovician Multiphase Oil and Gas Reservoirs in South Tahe Area. Earth Science, 48(2): 657-672. doi: 10.3799/dqkx.2022.445

    Study on the Origin and Accumulation Model of Ordovician Multiphase Oil and Gas Reservoirs in South Tahe Area

    doi: 10.3799/dqkx.2022.445
    • Received Date: 2022-11-30
    • Publish Date: 2023-02-25
    • The genetic model of the Ordovician multiphase oil and gas reservoirs in the south Tahe area is not well understood, the reservoir geochemistry, structural analysis, and geophysics have been used to conduct a deep study of the fluid properties, phase distribution, and origin of the Ordovician. It is discovered that the Ordovician reservoir fluid exhibits "four low and one high" features as well as the coexistence of dry gas and wet gas. Three different types of oil and gas reservoirs-condensate gas reservoir, volatile oil reservoir, and light oil reservoir-present the distribution pattern of east gas and west oil reservoirs, respectively. Only the nose bulge in the Hade block has experienced biodegradation, leaving most of the Ordovician crude oil in excellent condition. The crude oil has not experienced extensive cracking or TSR reaction and is of normal maturity. Early accumulation, vertical migration and accumulation, lateral adjustment, and sublevel enrichment are the characteristics of the primary Ordovician light oil reservoir in the main region. "Multi-source hydrocarbon supply, early oil and late gas, vertical charging and lateral migration and accumulation" are characteristics of the Ordovician condensate gas reservoir in the Yuke area's accumulation mechanism. It is determined that the Ordovician oil and gas preservation conditions are better in the south Tahe area, that there may still be major oil resources in the strike-slip fault zone in the southern depression area, and that there are significant natural gas resources in the platform margin zone of the Middle Cambrian Yijianfang Formation.

       

    • loading
    • Abrams, M., 2017. Evaluation of Near-Surface Gases in Marine Sediments to Assess Subsurface Petroleum Gas Generation and Entrapment. Geosciences, 7(2): 35. https://doi.org/10.3390/geosciences7020035
      Bernard, F. P., Connan, J., Magot, M., 1992. Indigenous Microorganisms in Connate Water of Many Oil Fields: a New Tool in Exploration and Production Techniques. SPE Annual Technical Conference and Exhibition. OnePetro.
      Cai, C. F., Amrani, A., Worden, R. H., et al., 2016. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182(6-7): 88-108. https://doi.org/10.1016/j.gca.2016.02.036
      Chai, Z., Chen, Z. H., Liu, H., et al., 2020. Light Hydrocarbons and Diamondoids of Light Oils in Deep Reservoirs of Shuntuoguole Low Uplift, Tarim Basin: Implication for the Evaluation on Thermal Maturity, Secondary Alteration and Source Characteristics. Marine and Petroleum Geology, 117: 104388. https://doi.org/10.1016/j.marpetgeo.2020.104388
      Chi, L. X., 2020. The Effect of Gas Invasion on the Molecular Composition of Crude Oil in Lungu Area of the Tarim Basin(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Ding, Z. W., Wang, R. J., Cheng, F. F., et al., 2020. Origin, Hydrocarbon Accumulation and Oil-Gas Enrichment of Fault-Karst Carbonate Reservoirs: A Case Study of Ordovician Carbonate Reservoirs in South The Area of Halahatang Oilfield, Tarim Basin. Petroleum Exploration and Development, 47(2): 286-297 (in Chinese with English abstract).
      Feng, J., Zhang, Y. J., Zhang, Z. W., et al., 2022. Characteristics and Main Control Factors of Ordovician Shoal Dolomite Gas Reservoir in Gucheng Area, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 45-55 (in Chinese with English abstract).
      Han, J. F., Su, Z., Chen, L. X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310 (in Chinese with English abstract). doi: 10.7623/syxb201911002
      Han, J. F., Wu, G. H., Xiao, Z. Y., et al., 2020. A New Understanding of the Distribution of Cambrian Source Rocks in Tarim Basin and Its Significance. Geoscience, 55(1): 17-29 (in Chinese with English abstract).
      Han, Y. K., Zhang, Z. Y., Cheng, W. Y., et al., 2021. Geological Conditions and Evolution for the Accumulation of the Ultra-Deep Oil Pools in the Yueman Area, Tarim Basin. Natural Gas Geoscience, 32(11): 1634-1645 (in Chinese with English abstract).
      Jiao, F. Z., 2019. Practice and Knowledge of Volumetric Development of Deep Fractured-Vuggy Carbonate Reservoirs in Tarim Basin, NW China. Petroleum Exploration and Development, 46(3): 552-558 (in Chinese with English abstract).
      Jones, D. M., Head, I. M., Gray, N. D., et al., 2007. Crude-Oil Biodegradation Via Methanogenesis in Subsurface Petroleum Reservoirs. Nature, 451(7175): 176-180. https://doi.org/10.1038/nature06484
      Li, F., Zhu, G. Y., Lv, X. X., et al., 2021. The Disputes on the Source of Paleozoic Marine Oil and Gas and the Determination of the Cambrian System as the Main Source Rocks in Tarim Basin. Acta Petrolei Sinica, 42(11): 1417-1437 (in Chinese with English abstract).
      Li, J. F., Zhang, Z. Y., Zhu, G. Y., et al., 2020. The Origin and Accumulation of Ultra-Deep Oil in Halahatang Area, Northern Tarim Basin. Journal of Petroleum Science and Engineering, 195(4): 107898. https://doi.org/10.1016/j.petrol.2020.107898
      Li, M. C., 2004. Basic Principles of Migration and Hydrocarbon Exploration. Earth Science, 4: 379-383 (in Chinese with English abstract).
      Li, S. M., Pang, X. Q., Yang, H. J., et al., 2010. Geochemical Characteristics and Families of the Crude Oils in the Yingmaili Oilfield Tarim Basin. Geoscience, 24(4): 643-653 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2010.04.001
      Liu, H., Jing, C., Liu, Y. L., et al., 2018. Optimization of Hydrocarbon Migration Parameters and Identification of Migration Pattern. Petroleum Geology & Experiment, 40(3): 126-132+140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201803017.htm
      Liu, Y. N., 2022. Characteristics and Impacts on Favorable Reservoirs of Carbonate Ramp Microfacies: A Case Study of the Middle-Lower Ordovician in Gucheng Area, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 93-105 (in Chinese with English abstract).
      Ma, A. L., He, Z. L., Yun, L., et al., 2021. The Geochemical Characteristics and Origin of Ordovician Ultra-Deep Natural Gas in the North Shuntuoguole Area, Tarim Basin, NW China. Natural Gas Geoscience, 32(7): 1047-1060 (in Chinese with English abstract).
      Ma, A. L., Jing, Z. J., Zhu, C. S., et al., 2018. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from molecular markers. Oil & Gas Geology, 39(4): 730-737+748 (in Chinese with English abstract).
      Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17 (in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings: Old and New Insights. Sedimentary Geology, 140(1/2): 143-175. https://doi.org/10.1016/s0037-0738(0)00176-7
      Mango, F. D., 1987. An Invariance in the Isoheptanes of Petroleum. Science, 237(4814): 514-517. https://doi.org/10.1126/science.237.4814.514
      Qi, L. X., Yun, L, 2022. Carbonate Reservoir-Forming Model and Exploration Practice in Tarim Basin. Petroleum Geology & Experiment, 42(5): 867-876 (in Chinese with English abstract).
      Radke, M., Welte, D. H., Willsch, H., 1986. Maturity Parameters Based on Aromatic Hydrocarbons: Influence of the Organic Matter Type. Organic Geochemistry, 10(1/2/3): 51-63. https://doi.org/10.1016/0146-6380(86)90008-2
      Song, D. F., Zhang, C. M., Li, S. M., et al., 2017. Elevated Mango's K1 Values Resulting from Thermochemical Sulfate Reduction within the Tazhong Oils, Tarim Basin. Energy & Fuels, 31(2): 1250-1258. https://doi.org/10.1021/acs.energyfuels.6b02503
      Sun, Q. Q., Fan, T. L., Gao, Z. Q., et al., 2021. New Insights on the Geometry and Kinematics of the Shunbei 5 Strike-Slip Fault in the Central Tarim Basin, China. Journal of Structural Geology, 150(1‐4): 104400. https://doi.org/10.1016/j.jsg.2021.104400
      Ten Haven, H. L., 1996. Applications and Limitations of Mango's Light Hydrocarbon Parameters in Petroleum Correlation Studies. Organic Geochemistry, 24(10/11): 957-976. https://doi.org/10.1016/s0146-6380(96)00091-5
      Tian, J., Yang, H. J., Zhu, Y. F., et al., 2021. Geological Conditions for Hydrocarbon Accumulation and Key Technologies for Exploration and Development in Fuman Oilfield, Tarim Basin. Acta Petrolei Sinica, 42(8): 971-985 (in Chinese with English abstract).
      Thompson, K. F. M., 1979. Light Hydrocarbons in Subsurface Sediments. Geochimica et Cosmochimica Acta, 43(5): 657-672. https://doi.org/10.1016/0016-7037(79)90251-5
      Wang, Y., Zhang, X. N., Liu, Y. L., et al., 2022. Controls of Strike-Slip Fault Activities on Hydrocarbon Accumulation in Tahe Oilfield, Tarim Basin. Petroleum Geology & Experiment, 44(3): 394-401 (in Chinese with English abstract).
      Wang, Q. H., Yang, H. J., Wang, R. J., et al., 2021. Discovery and Exploration Technology of Fault-Controlled Large Oil and Gas Fields of Ultra-Deep Formation in Strike Slip Fault Zone in Tarim Basin. China Petroleum Exploration, 26(4): 58-72 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2021.04.005
      Wang, Y. Y., Chen, J. F., Pang, X. Q., et al., 2018. Faulting Controls on Oil and Gas Composition in the Yingmai 2 Oilfield, Tarim Basin, NW China. Organic Geochemistry, 123(Suppl. 1): 48-66. https://doi.org/10.1016/j.orggeochem.2018.04.007
      Wang, Z., Tang, D. Q., Kang, Z. J., et al., 2022. Development Characteristics and Reservoir Control of the Middle-North Segment of Shunbei 5 Strike-Slip Fault Zone, Tarim Basin. Earth Science. https://doi.org/10.3799/dqkx.2022.0911-29 (in Chinese with English abstract).
      Wu, X., Li, D., Han, J., et al., 2022. Characteristics of Present Ultra-Deep Geothermal Field in the Northern Shuntuoguole Low Uplift, Tarim Basin. Acta Petrolei Sinica, 43(1): 29-40 (in Chinese with English abstract).
      Yang, S., Wu, G. H., Zhu, Y. F., et al., 2022. Key Oil Accumulation Periods of Ultra-Deep Fault-Controlled Oil Reservoir in Northern Tarim Basin, NW China. Petroleum Exploration and Development, 49(2): 249-261 (in Chinese with English abstract).
      Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Significance of Ultra-Deep Oil and Gas Exploration in Well LunTan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.02.007
      Zhang, S. C., S., J., Zhang, B., et al., 2021. Genetic Mechanism and Controlling Factors of Deep Marine Light Oil and Condensate Oil in Tarim Basin. Acta Petrolei Sinica, 42(12): 1566-1580 (in Chinese with English abstract).
      Zhang, S. C., Liang, D. G., Li, M. W., et al., 2002. Molecular Fossils and Oil Source Correlation in Tarim Basin. Scientific Bulletin, (S1): 16-23 (in Chinese with English abstract).
      Zhang, Y., Tian, Z. J., Wu, Y. P., 2018. ESR Dating Method of Hydrocarbon Inclusions-Hosting Minerals and Its Application in Timing of Hydrocarbon Accumulation: a Case Study of Cambrian-Ordovician Reservoirs in the Northern Tarim Basin. China Petroleum Exploration, 23(3): 47-56 (in Chinese with English abstract).
      Zhang, Z., Zhang, Y., Zhu, G., et al., 2019. Variations of Diamondoids Distributions in Petroleum Fluids during Migration Induced Phase Fractionation: A Case Study from the Tazhong Area, NW China. Journal of Petroleum Science and Engineering, 179: 1012-1022. doi: 10.1016/j.petrol.2019.05.016
      Zhang, Z., Zhu, G., Zhang, Y., et al., 2018. The Origin and Accumulation of Multi-Phase Reservoirs in the East Tabei Uplift, Tarim Basin, China. Marine and Petroleum Geology, 98: 533-553. doi: 10.1016/j.marpetgeo.2018.08.036
      Zhu, G., Li, J., Chi, L., et al., 2020. The Influence of Gas Invasion on the Composition of Crude Oil and the Controlling Factors for the Reservoir Fluid Phase. Energy & Fuels, 34(3): 2710-2725.
      Zhu, G., Milkov, A. V., Zhang, Z., et al., 2019. Formation and Preservation of a Giant Petroleum Accumulation in Superdeep Carbonate Reservoirs in the Southern Halahatang Oil Field Area, Tarim Basin, China. AAPG Bulletin, 103(7): 1703-1743. https://doi.org/10.1306/11211817132
      Zhu, G., Zhang, B., Yan, G. H., et al., 2014. Origin of Deep Strata Gas of Tazhong in Tarim Basin, China. Organic Geochemistry, 74: 85-97. https://doi.org/10.1016/j.orggeochem.2014.03.003
      Zhu, G. Y., Li, J. F., Zhang, Z. Y. 2022. Origin and Intensity of Secondary Geochemistry of Deep Hydrocarbon Facies Diversity: A Case Study of Marine Hydrocarbon in Tarim Basin. Earth Science, 1-17 (in Chinese with English abstract).
      池林贤, 2020. 气侵作用对塔里木盆地轮古地区原油分子组成的影响(博士毕业论坛). 北京: 中国地质大学.
      丁志文, 汪如军, 陈方方, 等, 2020. 断溶体油气藏成因、成藏及油气富集规律——以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例. 石油勘探与开发, 47(2): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002009.htm
      冯军, 张亚金, 张振伟, 等, 2022. 塔里木盆地古城地区奥陶系滩相白云岩气藏特征及主控因素. 石油勘探与开发, 49(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201004.htm
      韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201911002.htm
      韩剑发, 邬光辉, 肖中尧, 等, 2020. 塔里木盆地寒武系烃源岩分布的重新认识及其意义. 地质科学, 55(1): 17-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202001002.htm
      韩永科, 张志遥, 陈玮岩, 等, 2021. 塔里木盆地跃满地区超深油藏成藏地质条件与演化过程. 天然气地球科学, 32(11): 1634-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111004.htm
      焦方正, 2019. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识. 石油勘探与开发, 46(3): 552-558. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903014.htm
      李峰, 朱光友, 吕修祥, 等, 2021. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定. 石油学报, 42(11): 1417-1437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111003.htm
      李明诚, 2004. 油气运移基础理论与油气勘探. 地球科学, 2004(4): 379-383. http://www.earth-science.net/article/id/1516
      李素梅, 庞雄奇, 杨海军, 等, 2010. 塔里木盆地英买力地区原油地球化学特征与族群划分. 现代地质, 2010, 24(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201004001.htm
      刘华, 景琛, 刘雅利, 等, 2018. 油气运移表征参数优选及运移方式判识. 石油实验地质, 40(3): 126-132+140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201803017.htm
      刘艺妮, 2022. 碳酸盐缓坡沉积微相特征及其对储集层发育的制约——以塔里木盆地古城地区中一下奥陶统为例. 石油勘探与开发, 49(1): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201008.htm
      马安来, 何治亮, 云露, 等, 2021. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因. 天然气地球科学, 32(7): 1047-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202107011.htm
      马安来, 金之钧, 朱翠山, 等, 2018. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据. 石油与天然气地质, 39(4): 730-737+748. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804011.htm
      马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
      漆立新, 云露, 2022. 塔里木台盆区碳酸盐岩成藏模式与勘探实践. 石油实验地质, 42(5): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005024.htm
      田军, 杨海军, 朱永峰, 等, 2021. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术. 石油学报, 42(8): 971-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202108001.htm
      汪洋, 张哨楠, 刘永立, 2022. 塔里木盆地塔河油田走滑断裂作用——以托甫39断裂带为例. 石油实验地质, 44(3): 394-402. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203003.htm
      王清华, 杨海军, 汪如军, 等, 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探, 26(4): 58-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104005.htm
      王珍, 唐大卿, 康志江, 等, 2022. 塔里木盆地顺北5号走滑断裂带中北段发育特征及控藏作用. 地球科学, 1-29.
      吴鲜, 李丹, 韩俊, 等, 2022. 塔里木盆地顺托果勒北部地区超深层现今地温场特征. 石油学报, 43(1): 29-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201003.htm
      杨率, 邬光辉, 朱永峰, 等, 2022. 塔里木盆地北部地区超深断控油藏关键成藏期. 石油勘探与开发, 49(2): 249-261. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202002.htm
      杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htm
      张水昌, 苏劲, 张斌, 等, 2021. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素. 石油学报, 42(12): 1566-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202112003.htm
      张水昌, 梁狄刚, 黎茂稳, 等, 2002. 分子化石与塔里木盆地油源对比. 科学通报, 2002(S1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1002.htm
      张燕, 田作基, 吴义平, 2018. 烃包裹体赋存矿物ESR测年-塔北地区寒武系-奥陶系为例. 中国石油勘探, 23(3): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201803007.htm
      朱光有, 李婧菲, 张志遥, 2022. 深层油气相态多样性成因与次生地球化学作用强度评价——以塔里木盆地海相油气为例. 地球科学, 1-17.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)

      Article views (606) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return