• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 1
    Jan.  2023
    Turn off MathJax
    Article Contents
    Liu Xianyang, Guo Wen, Liu Jiangyan, Li Shixiang, 2023. Characteristics and Exploration Prospects of Deep-Water Sandstone Reservoir of Chang 73 Sub-Member, Ordos Basin. Earth Science, 48(1): 279-292. doi: 10.3799/dqkx.2022.446
    Citation: Liu Xianyang, Guo Wen, Liu Jiangyan, Li Shixiang, 2023. Characteristics and Exploration Prospects of Deep-Water Sandstone Reservoir of Chang 73 Sub-Member, Ordos Basin. Earth Science, 48(1): 279-292. doi: 10.3799/dqkx.2022.446

    Characteristics and Exploration Prospects of Deep-Water Sandstone Reservoir of Chang 73 Sub-Member, Ordos Basin

    doi: 10.3799/dqkx.2022.446
    • Received Date: 2022-04-12
      Available Online: 2023-02-01
    • Publish Date: 2023-01-25
    • Thick organic-rich shale with thin silty sandstones is developed in Chang 73 Sub-member of Yanchang Formation in Ordos Basin. The sandstones in deep water environment are charged high intensity by source rocks and have a certain scale, which is an important target of deep water exploration in the basin. Based on the core, logging and test data of Chang 73 Sub-member, combined with the risk exploration practice of Lingye and Chiye horizontal wells, this paper discusses and analyzes the sedimentary and reservoir characteristics of deep-water sandy rocks in Chang 73 Sub-member. The results show that during the Chang 73 sedimentary period, the water body was deep, organic-rich shale was developed, the Qiqin orogenic belt in the southwest of the basin had frequent seismic and volcanic activities, and the source supply was sufficient, the rainfall was large and the lake level was rising. The gravity flow deposits of slump origin and flood origin were widely developed in the middle of the basin. Slope break belt controlled the development of deep-water gravity flow, the characteristics of deep-water gravity flow were controlled by the ancient landform and sedimentary microfacies, developing sliding-slump, sandy debris flow, hybrid event bed, turbidity current and density flow, such as slope break zone of slope toe, relatively rich ancient channel sand, sandy debris flow and turbidity current deposits are favorable reservoir types. The single sand body is thin, with an average thickness of 1 m, and is isolated or superimposed. In terms of spatial thickness, length and width, the combination of thick block single sand body and tightly continuous superimposed thin single sand body is the reservoir expected to be drilled. Shale with high Ro and high TOC is the material basis for sandy rock. Under high residual pressure difference, high-quality sandy "sweet spot" is most likely to appear in the source-reservoir configuration relationship between tightly stacked thin sandstone reservoir with better reservoir performance and interbedded high-quality source rock. The exploration potential of deep-water sandy rocks in Chang 73 Sub-member is good, so it is necessary to continuously explore the geophysical exploration technology of thin reservoir and the matched fracturing technology.

       

    • loading
    • Cao, Y. C., Wang, Y. Z., Gluyas, J. G., et al., 2018. Depositional Model for Lacustrine Nearshore Subaqueous Fans in a Rift Basin: The Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, China. Sedimentology, 65(6): 2117-2148. https://doi.org/10.1111/sed.12459
      Cartigny, M. J. B., Eggenhuisen, J. T., Hansen, E. W. M., et al., 2013. Concentration-Dependent Flow Stratification in Experimental High-Density Turbidity Currents and Their Relevance to Turbidite Facies Models. Journal of Sedimentary Research, 83(12): 1046-1064. https://doi.org/10.2110/jsr.2013.71
      Felix, M., Peakall, J., 2006. Transformation of Debris Flows into Turbidity Currents: Mechanisms Inferred from Laboratory Experiments. Sedimentology, 53(1): 107-123. doi: 10.1111/j.1365-3091.2005.00757.x
      Fongngern, R., Olariu, C., Steel, R., et al., 2018. Subsurface and Outcrop Characteristics of Fluvial‐Dominated Deep‐Lacustrine Clinoforms. Sedimentology, 65(5): 1447-1481. doi: 10.1111/sed.12430
      Fu, J. H., Li, S. X., Niu, X. B., et al., 2020. Geological Characteristics and Exploration of Shale Oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(5): 870-883 (in Chinese with English abstract).
      Fu, J. H., Li, S. X., Xu, L. M., et al., 2018. Paleo-Sedimentary Environmental Restoration and Its Significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6): 936-946 (in Chinese with English abstract).
      Fu, X., Du, X. F., Guan, D. Y., et al., 2020. Depositional System, Plane Distribution and Exploration Significance of Fan Delta Mixed Siliciclastic-Carbonate Sediments in Lacustrine Basin: An Example of Member 1—2 of Shahejie Formation in Offshore Bohai Bay, Eastern China. Earth Science, 45(10): 3706-3720 (in Chinese with English abstract).
      Jin, J. H., Cao, Y. C., Wang, J., et al., 2019. Deep-Water Sandy Debris Flow Deposits: Concepts, Sedimentary Processes and Characteristics. Geological Review, 65(3): 689-702 (in Chinese with English abstract).
      Li, S. X., Niu, X. B., Liu, G. D., et al., 2020. Formation and Accumulation Mechanism of Shale Oil in the 7th Member of Yanchang Formation, Ordos Basin. Oil & Gas Geology, 41(4): 719-729 (in Chinese with English abstract).
      Li, S. X., Zhou, X. P., Guo, Q. H., et al., 2021. Research on Evaluation Method of Movable Hydrocarbon Resources of Shale Oil in the Chang 73 Sub-Member in the Ordos Basin. Natural Gas Geoscience, 32(12): 1771-1784 (in Chinese with English abstract).
      Li, X., Cheng, X. Z., Zhou, C. C., et al., 2015. Technology and Application of Well Logging Evaluation of Shale Oil and Gas Reservoirs. Natural Gas Geoscience, 26(5): 904-914 (in Chinese with English abstract).
      Li, Z. M., Tao, G. L., Li, M. W., et al., 2019. Discussion on Prospecting Potential of Shale Oil in the 3rd Sub-Member of the Triassic Chang 7 Member in Binchang Block, Southwestern Ordos Basin. Oil & Gas Geology, 40(3): 558-570 (in Chinese with English abstract).
      Liu, X. Y., Li, S. X., Guo, Q. H., et al., 2021. Characteristics of Rock Types and Exploration Significance of the Shale Strata in the Chang 73 Sub-Member of Yanchang Formation, Ordos Basin. Natural Gas Geoscience, 32(8): 1177-1189 (in Chinese with English abstract).
      Mulder, T., Alexander, J., 2001. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology, 48(2): 269-299. doi: 10.1046/j.1365-3091.2001.00360.x
      Pei, Y., He, Y. B., Li, H., et al., 2015. Discuss about Relationship between High-Density Turbidity Current and Sandy Debris Flow. Geological Review, 61(6): 1281-1292 (in Chinese with English abstract).
      Qiu, X. W., Liu, C. Y., Mao, G. Z., et al., 2011. Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin. Earth Science, 36(1): 139-150 (in Chinese with English abstract).
      Qiu, Z., Zou, C. N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29 (in Chinese with English abstract).
      Shanmugam, G., 2013. New Perspectives on Deep-Water Sandstones: Implications. Petroleum Exploration and Development, 40(3): 316-324. https://doi.org/10.1016/S1876-3804(13)60038-5
      Song, M. S., Xiang, K., Zhang, Y., et al., 2017. Research Progresses on Muddy Gravity Flow Deposits and Their Significances on Shale Oil and Gas: A Case Study from the 3rd Oil-Member of the Paleogene Shahejie Formation in the Dongying Sag. Acta Sedimentologica Sinica, 35(4): 740-751 (in Chinese with English abstract).
      Talling, P. J., 2013. Hybrid Submarine Flows Comprising Turbidity Current and Cohesive Debris Flow: Deposits, Theoretical and Experimental Analyses, and Generalized Models. Geosphere, 9(3): 460-488. doi: 10.1130/GES00793.1
      Tan, M. X., Zhu, X. M., Geng, M. Y., et al., 2016. The Flow Transforming Deposits of Sedimentary Gravity Flow-Hybrid Event Bed. Acta Sedimentologica Sinica, 34(6): 1108-1119 (in Chinese with English abstract).
      Tian, J., Song, J., Ma, B. J., et al., 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718 (in Chinese with English abstract).
      Wu, S. T., Li, S. X., Yuan, X. J., et al., 2021. Fluid Mobility Evaluation of Tight Sandstones in Chang 7 Member of Yanchang Formation, Ordos Basin. Journal of Earth Science, 32(4): 850-862. https://doi.org/10.1007/s12583-020-1050-2
      Wu, S. T., Zou, C. N., Zhu, R. K., et al., 2015. Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin. Earth Science, 40(11): 1810-1823 (in Chinese with English abstract).
      Xu, L. M., Guo, Q. H., Liu, Y. B., et al., 2021. Characteristics and Controlling Factors of Deep-Water Gravity Flow Sandstone Reservoir in the Chang 73 Sub-Member in Ordos Basin: Case Study of Well CY1 in Huachi Area. Natural Gas Geoscience, 32(12): 1797-1809 (in Chinese with English abstract).
      Zhang, J. Q., Li, S. X., Li, H. W., et al., 2021. Gravity Flow Deposits in the Distal Lacustrine Basin of the 7th Reservoir Group of Yanchang Formation and Deepwater Oil and Gas Exploration in Ordos Basin: A Case Study of Chang 73 Sublayer of Chengye Horizontal Well Region. Acta Petrolei Sinica, 42(5): 570-587 (in Chinese with English abstract).
      Zhang, Y. A., Li, S. X., Tian, J. C., et al., 2021. Sedimentation Types of Deep-Water Gravity Flow, Chang 7 Member, Upper Triassic Yanchang Formation, Ordos Basin. Acta Sedimentologica Sinica, 39(2): 297-309 (in Chinese with English abstract).
      Zhou, X. P., He, Q., Liu, J. Y., et al., 2021. Features and Origin of Deep-Water Debris Flow Deposits in the Triassic Chang 7 Member, Ordos Basin. Oil & Gas Geology, 42(5): 1063-1077 (in Chinese with English abstract).
      Zhu, R. K., Jin, X., Wang, X. Q., et al., 2018. Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5): 1773-1782 (in Chinese with English abstract).
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2019. Establishment and Practice of Unconventional Oil and Gas Geology. Acta Geologica Sinica, 93(1): 12-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.13759
      Zou, C. N., Zhao, Q., Wang, H. Y., et al., 2021. Theory and Technology of Unconventional Oil and Gas Exploration and Development Helps China Increase Oil and Gas Reserves and Production. Petroleum Science and Technology Forum, 40(3): 72-79 (in Chinese with English abstract).
      付金华, 李士祥, 牛小兵, 等, 2020. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践. 石油勘探与开发, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm
      付金华, 李士祥, 徐黎明, 等, 2018. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义. 石油勘探与开发, 45(6): 936-946. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806003.htm
      付鑫, 杜晓峰, 官大勇, 等, 2020. 渤海海域沙河街组一二段扇三角洲混合沉积特征、沉积模式及勘探意义. 地球科学, 45(10): 3706-3720. doi: 10.3799/dqkx.2020.173
      金杰华, 操应长, 王健, 等, 2019. 深水砂质碎屑流沉积: 概念、沉积过程与沉积特征. 地质论评, 65(3): 689-702. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201903016.htm
      李士祥, 牛小兵, 柳广弟, 等, 2020. 鄂尔多斯盆地延长组长7段页岩油形成富集机理. 石油与天然气地质, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm
      李士祥, 周新平, 郭芪恒, 等, 2021. 鄂尔多斯盆地长73亚段页岩油可动烃资源量评价方法. 天然气地球科学, 32(12): 1771-1784. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112003.htm
      李霞, 程相志, 周灿灿, 等, 2015. 页岩油气储层测井评价技术及应用. 天然气地球科学, 26(5): 904-914. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505014.htm
      李志明, 陶国亮, 黎茂稳, 等, 2019. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨. 石油与天然气地质, 40(3): 558-570. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903012.htm
      刘显阳, 李士祥, 郭芪恒, 等, 2021. 鄂尔多斯盆地延长组长73亚段泥页岩层系岩石类型特征及勘探意义. 天然气地球科学, 32(8): 1177-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202108008.htm
      裴羽, 何幼斌, 李华, 等, 2015. 高密度浊流和砂质碎屑流关系的探讨. 地质论评, 61(6): 1281-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201506010.htm
      邱欣卫, 刘池洋, 毛光周, 等, 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. doi: 10.3799/dqkx.2011.015
      邱振, 邹才能, 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001001.htm
      宋明水, 向奎, 张宇, 等, 2017. 泥质重力流沉积研究进展及其页岩油气地质意义: 以东营凹陷古近系沙河街组三段为例. 沉积学报, 35(4): 740-751. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201704008.htm
      谈明轩, 朱筱敏, 耿名扬, 等, 2016. 沉积物重力流流体转化沉积—混合事件层. 沉积学报, 34(6): 1108-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201606009.htm
      田洁, 宋军, 马本俊, 等, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062
      吴松涛, 邹才能, 朱如凯, 等, 2015. 鄂尔多斯盆地上三叠统长7段泥页岩储集性能. 地球科学, 40(11): 1810-1823. doi: 10.3799/dqkx.2015.162
      徐黎明, 郭芪恒, 刘元博, 等, 2021. 鄂尔多斯盆地长73亚段深水重力流砂岩储层特征及控制因素: 以华池地区CY1井为例. 天然气地球科学, 32(12): 1797-1809. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112005.htm
      张家强, 李士祥, 李宏伟, 等, 2021. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探: 以城页水平井区长73小层为例. 石油学报, 42(5): 570-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105002.htm
      张倚安, 李士祥, 田景春, 等, 2021. 鄂尔多斯盆地上三叠统延长组长7段深水重力流沉积类型. 沉积学报, 39(2): 297-309. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102003.htm
      周新平, 何青, 刘江艳, 等, 2021. 鄂尔多斯盆地三叠系延长组7段深水碎屑流沉积特征及成因. 石油与天然气地质, 42(5): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105006.htm
      朱如凯, 金旭, 王晓琦, 等, 2018. 复杂储层多尺度数字岩石评价. 地球科学, 43(5): 1773-1782. doi: 10.3799/dqkx.2018.429
      邹才能, 杨智, 张国生, 等, 2019. 非常规油气地质学建立及实践. 地质学报, 93(1): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201901003.htm
      邹才能, 赵群, 王红岩, 等, 2021. 非常规油气勘探开发理论技术助力我国油气增储上产. 石油科技论坛, 40(3): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT202103008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (1198) PDF downloads(100) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return