• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 4
    Apr.  2024
    Turn off MathJax
    Article Contents
    Dai Chaocheng, Zhong Chitao, Liu Xiaodong, Xiang Long, Xu Yaxin, 2024. Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447
    Citation: Dai Chaocheng, Zhong Chitao, Liu Xiaodong, Xiang Long, Xu Yaxin, 2024. Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447

    Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia

    doi: 10.3799/dqkx.2022.447
    • Received Date: 2022-07-18
      Available Online: 2024-04-30
    • Publish Date: 2024-04-25
    • The Lower Cretaceous Bayingobi Formation in the Hari sag, Bayingobi basin, Inner Mongolia, is a typical carbonate-type alkaline lake during the depositional period, and a large amount of Na-carbonate minerals developed during the salinization of the basin. In this paper, electron probe, X-diffraction, carbon and oxygen isotope and laser Raman spectroscopy were carried out to analyze the layered, speckled and vein-like Na-carbonate minerals in the trona layers of the Bayingobi Formation. The Na-carbonate minerals in the trona layer are mainly composed of trona, nahcolite, shortite, eitelite and bradleyite, with a small amount of hydrothermal minerals such as pyrite, chabazite-Na, searlesite and albite. The results of carbon and oxygen isotope testings show that the Lower Cretaceous trona layers in the Bayingobi basin were formed in a closed alkaline lake environment, the Na-carbonate minerals were formed at a temperature range of 34-80 ℃ (average 57 ℃). Under control of exhalative deposition and evaporation, silicate minerals were first formed in the trona layers, and then dolomite and calcite were formed, after Ca2+ and Mg2+ were almost consumed, trona and nacholite were precipitated. With sufficient Na+ brought by the hydrotherm, the early formed dolomite and calcite underwent metasomatism to form dawsonite and dawsonite. Based on the comprehensive analysis of mineralogy and geochemistry, the Na-carbonate sedimentary model of alkaline lake is established, which is controlled by hydrothermal exhalation and evaporative deposition, it can provide a new idea for the exploration of trona deposit.

       

    • loading
    • Cao, J., Lei, D. W., Li, Y. W., et al., 2015. Ancient High-Quality Alkaline Lacustrine Source Rocks Discovered in the Lower Permian Fengcheng Formation, Junggar Basin. Acta Petrolei Sinica, 36(7): 781-790 (in Chinese with English abstract).
      Chen, Z. P., Ren, Z. L., Yu, C. Y., et al., 2018. Characteristics and Genetic Analysis of Hydrothermal Sediment of Lower Cretaceous in Hari Depression, Yin'e Basin. Earth Science, 43(6): 1941-1956 (in Chinese with English abstract).
      Eugster, H. P., Smith, G. I., 1965. Mineral Equilibria in the Searles Lake Evaporites, California. Journal of Petrology, 6(3): 473-522. https://doi.org/10.1093/petrology/6.3.473
      García-Veigas, J., Gündoğan, İ., Helvacı, C., 2013. A Genetic Model for Na-Carbonate Mineral Precipitation in the Miocene Beypazarı Trona Deposit, Ankara Province, Turkey. Sedimentary Geology, 294: 315-327. https://doi.org/10.1016/j.sedgeo.2013.06.011
      Guo, P., Wen, H., Gibert, L., et al., 2021. Deposition and Diagenesis of the Early Permian Volcanic-Related Alkaline Playa-Lake Dolomitic Shales, NW Junggar Basin, NW China. Marine and Petroleum Geology, 123: 104780. https://doi.org/10.1016/j.marpetgeo.2020.104780
      Hammond, A. P., Carroll, A. R., Parrish, E. C., et al., 2019. The Aspen Paleoriver: Linking Eocene Magmatism to the World's Largest Na-Carbonate Evaporite (Wyoming, USA). Geology, 47(11): 1020-1024. https://doi.org/10.1130/g46419.1
      Helvacı, C., 2019. Turkish Trona Deposits: Geological Setting, Genesis and Overview of the Deposits. Modern Approaches in Solid Earth Sciences. Springer International Publishing, Cham. 599-633. https://doi.org/10.1007/978-3-030-02950-0_12
      Hendy, C. H., 1971. The Isotopic Geochemistry of Speleothems—I. The Calculation of the Effects of Different Modes of Formation on the Isotopic Composition of Speleothems and Their Applicability as Palaeoclimatic Indicators. Geochimica et Cosmochimica Acta, 35(8): 801-824. https://doi.org/10.1016/0016-7037(71)90127-X
      Hou, Z. Q., Mo, X. X., 1996. The Present and Future Investigation of the Modern Seafloor Hydrothermal Processes and Mineralization. Earth Science Frontiers, 3(4): 263-273 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1996.04.015
      İncı, U., Helvaci, C., Yağmurlu, F., 1988. Stratigraphy of Beypazarı Neogene Basin, Central Anatolia, Turkey. Newsletters on Stratigraphy, 18(3): 165-182. https://doi.org/10.1127/nos/18/1988/165
      Jagniecki, E. A., Jenkins, D. M., Lowenstein, T. K., et al., 2013. Experimental Study of Shortite (Na2Ca2(CO3)3) Formation and Application to the Burial History of the Wilkins Peak Member, Green River Basin, Wyoming, USA. Geochimica et Cosmochimica Acta, 115: 31-45. https://doi.org/10.1016/j.gca.2013.04.005
      Jiang, Y. Q., Wen, H. G., Qi, L. Q., et al., 2012. Salt Minerals and Their Genesis of the Permian Fengcheng Formation in Urho Area, Junggar Basin. Journal of Mineralogy and Petrology, 32(2): 105-114 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2012.02.014
      Keith, M. L., Weber, J. N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10/11): 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5
      Li, Y. L., Miao, W. L., Zhang, X. Y., et al., 2021. Hydrochemical Characteristics and Salt-Formation Elements Sources of Li-Rich Brines in Kushui Lake, West Kunlun. Earth Science, 46(11): 4161-4174 (in Chinese with English abstract).
      Liu, A., Chen, L., Chen, X. H., et al., 2021. Carbon and Oxygen Isotopic Characteristics of Devonian in Central Hunan Depression and Its Paleoenvironmental Significance. Earth Science, 46(4): 1269-1281 (in Chinese with English abstract).
      Liu, C. L., Zhao, Q. H., Wang, P. X., 2001. Correlation between Carbon and Oxygen Isotopic Ratios of Lacustrine Carbonates and Types of Oil-Producing Paleolakes. Geochimica, 30(4): 363-367 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2001.04.009
      Liu, Q., 2017. Composition and Geologic Significance of Carbon and Oxygen Isotopes in Hydrocarbon Source Rocks, Dongying Sag, Bohai Bay Basin. Petroleum Geology and Experiment, 39(2): 247-252 (in Chinese with English abstract).
      Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multiple Genesis of Dolomite in Lower Ordovician Tongzi Formation in Sichuan Basin. Earth Science, 46(2): 583-599 (in Chinese with English abstract).
      Lu, F. Y., An, Z. S., 2010. Climatic and Environmental Significance of Ostracod Abundance and Their Shell Oxygen Isotope from Lake Qinghai Surface Sediments. Marine Geology & Quaternary Geology, 30(5): 119-128 (in Chinese with English abstract).
      O'Neil, J. R., Clayton, R. N., Mayeda, T. K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. The Journal of Chemical Physics, 51(12): 5547-5558. https://doi.org/10.1063/1.1671982
      Qu, C. S., Qiu, L. W., Yang, Y. Q., et al., 2017. Carbon and Oxygen Isotope Compositions of Carbonatic Rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and Their Paleolimnological Significance. Acta Geologica Sinica, 91(3): 605-616 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.03.008
      Renaut, R. W., Owen, R. B., Jones, B., et al., 2013. Impact of Lake-Level Changes on the Formation of Thermogene Travertine in Continental Rifts: Evidence from Lake Bogoria, Kenya Rift Valley. Sedimentology, 60(2): 428-468. https://doi.org/10.1111/j.1365-3091.2012.01347.x
      Renaut, R. W., Tiercelin, J. J., 1994. Lake Bogoria, Kenya Rift Valley—A Sedimentological Overview. Sedimentology and Geochemistry of Modern and Ancient Saline Lakes. SEPM (Society for Sedimentary Geology), Tulsa: 101-123. https://doi.org/10.2110/pec.94.50.0101
      Smith, M. E., Carroll, A. R., Singer, B. S., 2008. Synoptic Reconstruction of a Major Ancient Lake System: Eocene Green River Formation, Western United States. Geological Society of America Bulletin, 120(1/2): 54-84. https://doi.org/10.1130/b26073.1
      Surdam, R. C., Parker, R. D., 1972. Authigenic Aluminosilicate Minerals in the Tuffaceous Rocks of the Green River Formation, Wyoming. Geological Society of America Bulletin, 83(3): 689. https://doi.org/10.1130/0016-7606(1972)83[689: aamitt]2.0.co;2 doi: 10.1130/0016-7606(1972)83[689:aamitt]2.0.co;2
      Talbot, M. R., 1990. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chemical Geology: Isotope Geoscience Section, 80(4): 261-279. https://doi.org/10.1016/0168-9622(90)90009-2
      Tong, Q. L., Ye, F. W., Qin, M. K., 2023. U-Pb Chronology of Detrital Zircons from Lower Cretaceous in Xinniwusu Sag, Bayingobi Basin and Its Geological Significance. Earth Science, 48(10): 3613-3630(in Chinese with English abstract).
      Wang, C. L., Liu, C. L., Xu, H. M., et al., 2013. Carbon and Oxygen Isotopes Characteristics of Palaeocene Saline Lake Facies Carbonates in Jiangling Depression and Their Environmental Significance. Acta Geoscientia Sinica, 34(5): 567-576 (in Chinese with English abstract).
      Wang, J. P., Zhang, Y. X., Yang, Q. T., et al., 1991. The Geological Characteristics and Origin of the Anpeng Alkali Deposit. Geological Review, 37(1): 42-50 (in Chinese with English abstract).
      Wang, L. B., Hou, G. F., Bian, B. L., et al., 2020. The Role of Modern Alkaline Lakes in Explaining the Sedimentary Environment of the Fengcheng Formation, Mahu Depression. Acta Sedimentologica Sinica, 38(5): 913-922 (in Chinese with English abstract).
      Wen, D. G., Zeng, J. H., 1997. Geochemical Modeling of the Formation of Biyang Alkali Deposit. Earth Science, 22(1): 69-73 (in Chinese with English abstract).
      Wen, H. G., Zheng, R. C., Qing, H. R., et al., 2014. Cretaceous Lacustrine Hydrothermal Primary Dolomite in the Qingxi Sag, Jiuquan Basin on the Northern Margin of the Qinghai-Tibet Plateau. Scientia Sinica (Terrae), 44(4): 591-604 (in Chinese). doi: 10.1360/zd-2014-44-4-591
      Xiang, L., Liu, X. D., Liu, P. H., et al., 2019. Genesis and Characteristics of Lacustrine Hydrothermal-Sedimentary Rock of the Lower Cretaceous in Yingejing Sag of Bayan Gebi Basin, Inner Mongolia. Journal of Palaeogeography, 21(5): 709-726 (in Chinese with English abstract).
      Xu, Y. X., Dai, C. C., Liu, X. D., et al., 2022. Geochemical Characteristics and Genesis of Lower Cretaceous Hydrothermal Sedimentary Rocks in Bayingebi Basin. Geological Review, 68(1): 122-137 (in Chinese with English abstract).
      Yi, H. S., Lin, J. H., Zhou, K. K., et al., 2007. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implication of the Cenozoic Lacustrine Carbonate Rocks in Northern Qinghai-Tibetan Plateau. Journal of Palaeogeography, 9(3): 303-312 (in Chinese with English abstract).
      Zhao, Y., Guo, P., Lu, Z. Y., et al., 2020. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China. Acta Sedimentologica Sinica, 38(5): 966-979 (in Chinese with English abstract).
      Zheng, R. C., Wen, H. G., Li, Y., et al., 2018. Compositions and Texture of Lacustrine Exhalative Rocks from the Lower Cretaceous Xiagou Formation in Qingxi Sag of Jiuxi Basin, Gansu. Journal of Palaeogeography, 20(1): 1-18 (in Chinese with English abstract).
      Zhong, D. K., Yang, Z., Sun, H. T., et al., 2018. Petrological Characteristics of Hydrothermal-Sedimentary Rocks: A Case Study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia. Journal of Palaeogeography, 20(1): 19-32 (in Chinese with English abstract).
      Zuo, J. X., Zhu, X. J., Chen, Y. L., et al., 2023. Carbon Isotope from Shallow Marine System in North China: Implications for Stratigraphical Correlation and Sea-Level Changes in Cambrian. Journal of Earth Science, 34(6): 1777-1792. https://doi.org/10.1007/s12583-021-1463-6
      曹剑, 雷德文, 李玉文, 等, 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781-790. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201906002.htm
      陈志鹏, 任战利, 于春勇, 等, 2018. 银额盆地哈日凹陷下白垩统热水沉积岩特征及成因. 地球科学, 43(6): 1941-1956. doi: 10.3799/dqkx.2018.527
      侯增谦, 莫宣学, 1996. 现代海底热液成矿作用研究现状及发展方向. 地学前缘, 3(4): 263-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY604.014.htm
      蒋宜勤, 文华国, 祁利祺, 等, 2012. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物和成因分析. 矿物岩石, 32(2): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201202015.htm
      李玉龙, 苗卫良, 张西营, 等, 2021. 西昆仑地区苦水湖富锂盐湖水化学特征及成盐元素来源. 地球科学, 46(11): 4161-4174. doi: 10.3799/dqkx.2020.370
      刘安, 陈林, 陈孝红, 等, 2021. 湘中坳陷泥盆系碳氧同位素特征及其古环境意义. 地球科学, 46(4): 1269-1281. doi: 10.3799/dqkx.2020.362
      刘传联, 赵泉鸿, 汪品先, 2001. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型. 地球化学, 30(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200104008.htm
      刘庆, 2017. 渤海湾盆地东营凹陷烃源岩碳氧同位素组成及地质意义. 石油实验地质, 39(2): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702014.htm
      刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026
      卢凤艳, 安芷生, 2010. 青海湖表层沉积物介形虫丰度及其壳体氧同位素的气候环境意义. 海洋地质与第四纪地质, 30(5): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201005019.htm
      曲长胜, 邱隆伟, 杨勇强, 等, 2017. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义. 地质学报, 91(3): 605-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201703008.htm
      童勤龙, 叶发旺, 秦明宽, 2023. 巴音戈壁盆地新尼乌苏凹陷下白垩统碎屑锆石U-Pb年代学及其地质意义. 地球科学, 48(10): 3613-3630. doi: 10.3799/dqkx.2021.198
      王春连, 刘成林, 徐海明, 等, 2013. 江陵凹陷古新世盐湖沉积碳酸盐碳氧同位素组成及其环境意义. 地球学报, 34(5): 567-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201305007.htm
      王吉平, 张幼勋, 杨清堂, 等, 1991. 论河南安棚碱矿地质特征及其成因. 地质论评, 37(1): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199101004.htm
      王力宝, 厚刚福, 卞保力, 等, 2020. 现代碱湖对玛湖凹陷风城组沉积环境的启示. 沉积学报, 38(5): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005002.htm
      文冬光, 曾建华, 1997. 泌阳碱矿形成的地球化学模拟研究. 地球科学, 22(1): 69-73. http://www.earth-science.net/article/id/466
      文华国, 郑荣才, Qing, H. R., 等, 2014. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中国科学(地球科学), 44(4): 591-604. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201603010.htm
      向龙, 刘晓东, 刘平辉, 等, 2019. 内蒙古巴音戈壁盆地因格井坳陷下白垩统湖相热水沉积岩特征及成因. 古地理学报, 21(5): 709-726. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201905002.htm
      许亚鑫, 戴朝成, 刘晓东, 等, 2022. 巴音戈壁盆地下白垩统热水沉积岩地球化学特征及成因探讨. 地质论评, 68(1): 122-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202201008.htm
      伊海生, 林金辉, 周恳恳, 等, 2007. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义. 古地理学报, 9(3): 303-312. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200703009.htm
      赵研, 郭佩, 鲁子野, 等, 2020. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨. 沉积学报, 38(5): 966-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005007.htm
      郑荣才, 文华国, 李云, 等, 2018. 甘肃酒西盆地青西凹陷下白垩统下沟组湖相喷流岩物质组分与结构构造. 古地理学报, 20(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201801001.htm
      钟大康, 杨喆, 孙海涛, 等, 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学报, 20(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201905001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (173) PDF downloads(22) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return