• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Kang Fengxin, Ma Zhemin, Shi Qipeng, Liu Xiao, Huang Hewan, 2023. Renewable Capacity of Karst Geothermal Water and Production-Reinjection Balanced Resources Evaluation: A Case Study of Heze Buried Uplift Geothermal Fields. Earth Science, 48(3): 1118-1137. doi: 10.3799/dqkx.2022.448
    Citation: Kang Fengxin, Ma Zhemin, Shi Qipeng, Liu Xiao, Huang Hewan, 2023. Renewable Capacity of Karst Geothermal Water and Production-Reinjection Balanced Resources Evaluation: A Case Study of Heze Buried Uplift Geothermal Fields. Earth Science, 48(3): 1118-1137. doi: 10.3799/dqkx.2022.448

    Renewable Capacity of Karst Geothermal Water and Production-Reinjection Balanced Resources Evaluation: A Case Study of Heze Buried Uplift Geothermal Fields

    doi: 10.3799/dqkx.2022.448
    • Received Date: 2022-08-20
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • The renewable capacity of geothermal water and production-reinjection balanced resources evaluation of karst geothermal fields are the key issues of sustainable exploitation of geothermal energy. In order to evaluate the research more scientifically, this paper takes the Heze buried uplift geothermal field as an example, and takes the cycle enrichment, development dynamics, hydro-chemical and isotope characteristics of geothermal water as the controlling factors to establish an evaluation index system to comprehensively evaluate the renewable capacity of karst reservoir geothermal resources. The calculation method of sustainable yield of geothermal water is put forward under the prerequisite of production-reinjection balance, i.e. under the condition of geothermal water equilibrium and heat energy equilibrium. Then, the sustainable yield of geothermal water in the concentrated exploitation area of the geothermal field is evaluated. The renewability of geothermal water in the Heze buried uplift geothermal field is divided into four districts: strong, relatively strong, medium and poor. The strong region is distributed in the recharge area in the northeastern part of the geothermal field near the Liang mountain and Jiaxiang; the poor region is distributed in the discharge area around Dingtao-Heze urban area in the central and southern part of the geothermal field. In the recharge area and near the fault zones, the fissures and karstifications are developed strongly, and the water abundance of the geothermal reservoir is rich. On the contrary, far away from the recharge area and the fault zones, the fissures and karstifications are developed weakly, and the water abundance is poor. Under the production-reinjection balanced condition, the sustainable yield of geothermal resources is evaluated to be 122 600 m3/d in the concentrated exploitation area, which is 2.49 times as much as under the natural condition.

       

    • loading
    • Axelsson, G., 2012. The Physics of Geothermal Energy. Comprehensive Renewable Energy. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-087872-0.00703-4
      Chen, Z. Y., Qi, J. X., Zhang, Z., 2010. Application of Isotope Hydrogeology Method in Typical Basins of North China. Science Press, Beijing, 20-21 (in Chinese).
      Cui, Y. L., Liu, F., Hao, Q. C., et al., 2015. Characteristics of Hydrogen and Oxygen Isotopes and Renewability of Groundwater in the Nuomuhong Alluvial Fan. Hydrogeology & Engineering Geology, 42(6): 1-7 (in Chinese with English abstract).
      Dai, M. G., Lei, H. F., Hu, J. G., et al., 2019. Evaluation of Recoverable Geothermal Resources and Development Parameters of Mesoproterozoic Thermal Reservoir with the Top Surface Depth of 3 500 m and Shallow in Xiong'an New Area. Acta Geologica Sinica, 93(11): 2874-2888 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.11.012
      Fan, J. J., 2006. Study on the Circulation Mode and Renewability of Geothermal Water in Guanzhong Basin (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Gao, Z. J., Li, S. H., 2014. The Renewal Capability in Geothermal Water in North China. Science & Technology Vision, (34): 73-74 (in Chinese with English abstract).
      Guo, T., Liu, Z. K., 2016. Application of Thermal Storage Method for Calculating the Geothermal Resources in the University Town of Chongqing City. Journal of Yangtze University (Natural Science Edition), 13(19): 57-64 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1409(s).2016.19.014
      Hosgor, F. B., Tureyen, O. I., Satman, A., 2016. Keeping Inventory of Carbon Dioxide in Liquid Dominated Geothermal Reservoirs. Geothermics, 64: 55-60. https://doi.org/10.1016/j.geothermics.2016.03.003
      Jia, X. B., 2009. Study of Renewal and the Recharge Question of Geothermal Waters in the Guanzhong Basin (Dissertation). Chang, an University, Xi'an (in Chinese with English abstract).
      Kang, F. X., Shi, Q. P., Ma, Z. M., et al., 2023. Genetic Mechanism of the Karst Geothermal Reservoir in Buried Uplifts of Basins: A Case Study of Heze. Acta Geologica Sinica, 97(1): 221-237 (in Chinese with English abstract).
      Li, Y. M., 2019. Characteristics and Resource Evaluation of Geothermal Resources in Zhaoxing Town, Luobei County, Heilongjiang Province (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Li, Y., Júlíusson, E., Pálsson, H., et al., 2017. Machine Learning for Creation of Generalized Lumped Parameter Tank Models of Low Temperature Geothermal Reservoir Systems. Geothermics, 70: 62-84. https://doi.org/10.1016/j.geothermics.2017.05.009
      Luo, L., Pang, Z. H., Liu, J. X., et al., 2017. Determining the Recharge Sources and Circulation Depth of Thermal Waters in Xianyang Geothermal Field in Guanzhong Basin: The Controlling Role of Weibei Fault. Geothermics, 69: 55-64. https://doi.org/10.1016/j.geothermics.2017.04.006
      Ma, Z. Y., Fan, J. J., Su, Y., et al., 2006. Hydrogeology Significance on Hydrogen and Oxygen Isotopes composition in Underground Thermal Water of Guanzhong Area, Shaanxi Province. Journal of Earth Sciences and Environment, 28(1): 41-46 (in Chinese with English abstract).
      Mao, X. M., Liang, X., Wang, F. L., et al., 2010. Calibrating Deep Groundwater 14C Ages of North China Plain with TDIC and a Comparative Study. Earth Science Frontiers, 17(6): 102-110 (in Chinese with English abstract).
      Megel, T., Rybach, L., 2000. Production Capacity and Sustainability of Geothermal Doublets. The World Geothermal Congress. Kyushu-Tohoku, 849-854.
      Peng, K., Zhao, Z. H., Fang, H., 2015. Study of Geothermal Resource Evaluation in the West of Binzhou City. Underground Water, 37(5): 22-24, 32 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2015.05.007
      Pritchett, J. W., 1998. Modeling Post-Abandonment Electrical Capacity Recovery for a Two-Phase Geothermal Reservoir. Transactions Geothermal Resources Council, 22: 521-528.
      Qin, Y. J., Chuai, Y. X., Zhao, J. C., 2018. Analysis on Exploitation and Utilization of Geothermal Resources of Guantao Formation Geothermal Reservoir in Gudao Oilfield. Geological Survey of China, 5(3): 11-16 (in Chinese with English abstract).
      Qin, Z., Valfells, Á., Guðjónsdóttir, M. S., 2017. The Lumped-Parameter Model on Two-Phase and Superheated Geothermal Reservoir. Energy Procedia, 142: 481-487. https://doi.org/10.1016/j.egypro.2017.12.075
      Sarak, H., Onur, M., Satman, A., 2005. Lumped-Parameter Models for Low-Temperature Geothermal Fields and Their Application. Geothermics, 34(6): 728-755. https://doi.org/10.1016/j.geothermics.2005.09.001
      Su, Y., Ma, Z. Y., Liu, F., et al., 2007. Deuterium Excess Parameter Features Study on Thermal Groundwater of Xi'an and Xianyang. Coal Geology & Exploration, 35(3): 39-41 (in Chinese with English abstract).
      Sun, Z. Y., Ma, R., Wang, Y. X., et al., 2016. Using Isotopic, Hydrogeochemical-Tracer and Temperature Data to Characterize Recharge and Flow Paths in a Complex Karst Groundwater Flow System in Northern China. Hydrogeology Journal, 24(6): 1393-1412. https://doi.org/10.1007/s10040-016-1390-2
      Zhang, B. J., Xu, J. X., Ma, Z. M., et al., 2010. Analysis on Groundwater Supply Sources Using Hydrogen and Oxygen Isotope Data—A Case Study of Yanggu-Qihe Salient, Northwestern Shandong, China. Geological Bulletin of China, 29(4): 603-609 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.04.016
      Zhang, L., 2011. Study on Resource Assessment and Sustainable Development and Utilization of Geothermal Water in Kaifeng City (Dissertation). Henan Polytechnic University, Jiaozuo (in Chinese with English abstract).
      Zhou, T. Q., Lin, J. W., Gao B. Z., Wang X. Y., 2003. Application of Radioisotope 14C to Geothermal Analysis. Journal of Jiaozuo Institute of Technology (Natural Science), 22(3): 176-179 (in Chinese with English abstract).
      陈宗宇, 齐继祥, 张兆, 2010. 北方典型盆地同位素水文地质学方法应用. 北京: 科学出版社, 20-21.
      崔亚莉, 刘峰, 郝奇琛, 等, 2015. 诺木洪冲洪积扇地下水氢氧同位素特征及更新能力研究. 水文地质工程地质, 42(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201506002.htm
      戴明刚, 雷海飞, 胡甲国, 等, 2019. 雄安新区顶面埋深在3 500 m以浅的中元古界热储可采地热资源量和开发参数评估. 地质学报, 93(11): 2874-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911012.htm
      范基姣, 2006. 关中盆地地下热水循环模式及可更新性研究(硕士学位论文). 西安: 长安大学.
      高志娟, 李书恒, 2014. 华北地区地热资源更新能力研究. 科技视界, (34): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201434052.htm
      郭彤, 刘之葵, 2016. 热储法在重庆市大学城地热水资源评价的应用. 长江大学学报(自然科学版), 13(19): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201619014.htm
      贾旭兵, 2009. 关中盆地地下热水的可更新性与回灌问题研究(硕士学位论文). 西安: 长安大学.
      康凤新, 史启朋, 马哲民, 等, 2023. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例. 地质学报, 97(1): 221-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202301015.htm
      李一鸣, 2019. 黑龙江省萝北县肇兴镇地热资源特征及资源量评价(硕士学位论文). 长春: 吉林大学.
      马致远, 范基娇, 苏艳, 等, 2006. 关中南部地下热水氢氧同位素组成的水文地质意义. 地球科学与环境学报, 28(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200601009.htm
      毛绪美, 梁杏, 王凤林, 等, 2010. 华北平原深层地下水14C年龄的TDIC校正与对比. 地学前缘, 17(6): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006014.htm
      彭凯, 赵振华, 房浩, 2015. 滨州西部地热资源计算与评价研究. 地下水, 37(5): 22-24, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201505008.htm
      秦耀军, 啜云香, 赵季初, 2018. 孤岛油田馆陶组热储地热资源开发利用分析. 中国地质调查, 5(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201803002.htm
      苏艳, 马致远, 刘方, 等, 2007. 西安咸阳地下热水氘过量参数研究. 煤田地质与勘探, 35(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200703010.htm
      张保建, 徐军祥, 马振民, 等, 2010. 运用H、O同位素资料分析地下热水的补给来源: 以鲁西北阳谷‒齐河凸起为例. 地质通报, 29(4): 603-609. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201004017.htm
      张良, 2011. 开封市城区地热水资源评价及可持续开发利用研究(硕士学位论文). 焦作: 河南理工大学.
      周廷强, 林健旺, 高宝珠, 等, 2003. 放射性同位素14C在地热研究中的应用. 焦作工学院学报(自然科学版), 22(3): 176-179. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB200303005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(22)  / Tables(8)

      Article views (1270) PDF downloads(106) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return