Citation: | Li Chao, Wang Lei, Chen Yang, Li Tianyi, 2023. Prediction Model of Soils' Preconsolidation Pressure Based on Bayesian Ensemble Learning Algorithm. Earth Science, 48(5): 1780-1792. doi: 10.3799/dqkx.2022.450 |
Benesty, J., Chen, J. D., Huang, Y. T., 2008. On the Importance of the Pearson Correlation Coefficient in Noise Reduction. IEEE Transaction on Audio Speech Language Processing, 16: 757-765. https://doi.org/10.1109/TASL.2008.919072
|
Bergstra, J., Yamins, D., Cox, D., 2013. Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms. Python in Science Conference, Texas, 13-19. https://doi.org/10.25080/Majora-8b375195-003
|
Breiman, L., 1996. Bagging Predictors. Mach Learn, 24: 123-140. https://doi.org/10.1007/BF00058655
|
Breiman, L., 2001. Random Forest. Mach Learn, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
|
Casagrande, A., 1936. The Determination of Pre-Consolidation Load and Its Practical Significance. Proc. of First Lcmfe, (3): 60-64. http://www.researchgate.net/publication/309546294_The_determination_of_pre-consolidation_load_and_its_practical_significance
|
Chang, L. Y., Wang, J. C., Zhu, X. R., 2009. Nonparametric Fitting Model for Determining Soil Preconsolidation Pressure. Rock and Soil Mechanics, 30(5): 1337-1342 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=YTLX200905028&dbcode=CJFD&year=2009&dflag=pdfdown
|
Chen, T. Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco, 785-794.
|
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Mach Learn, 20: 273-297. https://doi.org/10.1007/BF00994018
|
D'Ignazio, M., Phoon, K. K., Tan, S. A., et al., 2016. Correlations for Undrained Shear Strength of Finnish Soft Clays. Candian Geotechnical Journal, 53: 1628-1645. https://doi.org/10.1139/cgj-2016-0037
|
Dong, H. Y., Wang, Y. D., Li, L. H., 2021. A Review of Random Forest Optimization Algorithms. China Computer & Communication, 33(17): 34-37 (in Chinese with English abstract).
|
Gardner, M. W., 1998. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences. Atmos Environment, 32: 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0
|
Hastie, T., Friedman, J. H., Tibshirani, R., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math Inter, 27(2): 83-85. https://doi.org/10.1007/BF02985802
|
Li, H., Zhang, Z. E., Zhao, Z. Z., 2019. Data-Mining for Processes in Chemistry, Materials, and Engineering. Processes, 7(3): 151. https://doi.org/10.3390/pr7030151
|
Li, S., Chen, J., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z
|
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
|
Nascimento, D. S. C., Coelho, A. L. V., Canuto, A. M. P., 2014. Integrating Complementary Techniques for Promoting Diversity in Classifier Ensembles: A Systematic Study. Neurocomputing, 138: 347-357. https://doi.org/10.1016/j.neucom.2014.01.027
|
Shah, M. I., Javed, M. F., Abunama, T., 2021. Proposed Formulation of Surface Water Quality and Modelling Using Gene Expression, Machine Learning, and Regression Techniques. Environmental Science and Pollution Research International, 28(11): 13202-13220. https://doi.org/10.1007/s11356-020-11490-9
|
Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201
|
Vyas, R., Goel, P., Tambe, S. S., 2015. Genetic Programming Applications in Chemical Sciences and Engineering. In: Gandomi, A. H., Alavi, A. H., Ryan, C., eds., Handbook of Genetic Programming Applications. Springer International Publishing, Cham, 99-140.
|
Wong, T. T., 2015. Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-out Cross Validation. Pattern Recognition, 48(9): 2839-2846. doi: 10.1016/j.patcog.2015.03.009
|
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
|
Xia, Y. F., Liu, C. Z., Li, Y. Y., et al., 2017. A Boosted Decision Tree Approach Using Bayesian Hyper-Parameter Optimization for Credit Scoring. Expert System with Applications, 78: 225-241. doi: 10.1016/j.eswa.2017.02.017
|
Zhang, M. L., Zhou, Z. H., 2007. ML-KNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition, 40: 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019
|
Zhang, W. G., Wu, C. Z., Zhong, H., et al., 2021. Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and Random Forest Based on Bayesian Optimization. Geoscience Frontiers, 12: 469-477. https://doi.org/10.1016/j.gsf.2020.03.007
|
Zhang, W. G., Zhang, R. H., Wu, C. Z., et al., 2022. Assessment of Basal Heave Stability for Braced Excavations in Anisotropic Clay Using Extreme Gradient Boosting and Random Forest Regression. Underground Space, 7: 233-241. https://doi.org/10.1016/j.undsp.2020.03.001
|
Zhang, W. Z., 2014. Research on Consolidation Characteristics of Ultra Soft Soil (Dissertation). Tianjin University, Tianjin, 41-42 (in Chinese with English abstract).
|
Zhou, J., 2014. Research on Preconsolidation Pressure of Soil (Dissertation). Wuhan University of Technology, Wuhan, 12-15 (in Chinese with English abstract).
|
Zhou, J., Qiu, Y. G., Zhu, S. L., 2021. Estimation of the TBM Advance Rate under Hard Rock Conditions Using XGBoost and Bayesian Optimization. Underground Spaceace, 6: 206-515. https://doi.org/10.1016/j.undsp.2020.05.008
|
Zhou, Z. H., 2016. Machine Learning. Tsinghua University Press, Beijing, 171-196 (in Chinese).
|
常林越, 王金昌, 朱向荣, 2009. 确定土体前期固结压力的非参数化拟合模型. 岩土力学, 30(5): 1337-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905028.htm
|
董红瑶, 王弈丹, 李丽红, 2021. 随机森林优化算法综述. 信息与电脑, 33(17): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XXDL202117011.htm
|
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
|
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
|
张文振, 2014. 吹填超软土的固结特性试验分析(硕士学位论文). 天津: 天津大学, 41-42.
|
周军, 2014. 土先期固结压力问题的研究. (硕士学位论文). 武汉: 武汉理工大学, 12-15.
|
周志华, 2016, 机器学习. 北京: 清华大学出版社, 171-196.
|