• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Li Chao, Wang Lei, Chen Yang, Li Tianyi, 2023. Prediction Model of Soils' Preconsolidation Pressure Based on Bayesian Ensemble Learning Algorithm. Earth Science, 48(5): 1780-1792. doi: 10.3799/dqkx.2022.450
    Citation: Li Chao, Wang Lei, Chen Yang, Li Tianyi, 2023. Prediction Model of Soils' Preconsolidation Pressure Based on Bayesian Ensemble Learning Algorithm. Earth Science, 48(5): 1780-1792. doi: 10.3799/dqkx.2022.450

    Prediction Model of Soils' Preconsolidation Pressure Based on Bayesian Ensemble Learning Algorithm

    doi: 10.3799/dqkx.2022.450
    • Received Date: 2022-11-07
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Accurate assessment of soils' preconsolidation stress (PS) is important in geotechnical engineering practice. In this paper it analyzes the influence of soils' preconsolidation stress, uses ensemble learning algorithms (XGBoost, RF) to capture the relationship between soil parameters and establishes prediction models. A Bayesian optimization method was used to determine the optimal parameters of the models, three machin elearning algorithms, namely SVR, KNN, and MLP, are introduced for comparison, and the models were statistically analyzed by three error metrics, including correlation coefficient(R2), root mean square error (RMSE) and mean absolute percentage error (MAPE). And finally, the prediction accuracy and generalization of each model were evaluated under 5-fold cross-validation (CV). The XGBoost-based prediction accuracy is the highest, with RMSE and MAPE of 20.80 kPa and 18.29%, respectively, followed by RF with 24.532 kPa and 19.15%, respectively. Meanwhile, in the case of PS as a regression variable, its characteristic importance is USS > VES > w > LL > PL. It shows that the ensemble learning algorithms (XGBoost, RF) are better than other algorithms in terms of prediction accuracy and generalization in the case of small-scale data sets, and can be used as an effective method for sensitivity analysis of geotechnical parameters.

       

    • loading
    • Benesty, J., Chen, J. D., Huang, Y. T., 2008. On the Importance of the Pearson Correlation Coefficient in Noise Reduction. IEEE Transaction on Audio Speech Language Processing, 16: 757-765. https://doi.org/10.1109/TASL.2008.919072
      Bergstra, J., Yamins, D., Cox, D., 2013. Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms. Python in Science Conference, Texas, 13-19. https://doi.org/10.25080/Majora-8b375195-003
      Breiman, L., 1996. Bagging Predictors. Mach Learn, 24: 123-140. https://doi.org/10.1007/BF00058655
      Breiman, L., 2001. Random Forest. Mach Learn, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
      Casagrande, A., 1936. The Determination of Pre-Consolidation Load and Its Practical Significance. Proc. of First Lcmfe, (3): 60-64. http://www.researchgate.net/publication/309546294_The_determination_of_pre-consolidation_load_and_its_practical_significance
      Chang, L. Y., Wang, J. C., Zhu, X. R., 2009. Nonparametric Fitting Model for Determining Soil Preconsolidation Pressure. Rock and Soil Mechanics, 30(5): 1337-1342 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=YTLX200905028&dbcode=CJFD&year=2009&dflag=pdfdown
      Chen, T. Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco, 785-794. https://doi.org/10.1145/2939672.2939785
      Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Mach Learn, 20: 273-297. https://doi.org/10.1007/BF00994018
      D'Ignazio, M., Phoon, K. K., Tan, S. A., et al., 2016. Correlations for Undrained Shear Strength of Finnish Soft Clays. Candian Geotechnical Journal, 53: 1628-1645. https://doi.org/10.1139/cgj-2016-0037
      Dong, H. Y., Wang, Y. D., Li, L. H., 2021. A Review of Random Forest Optimization Algorithms. China Computer & Communication, 33(17): 34-37 (in Chinese with English abstract).
      Gardner, M. W., 1998. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences. Atmos Environment, 32: 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0
      Hastie, T., Friedman, J. H., Tibshirani, R., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math Inter, 27(2): 83-85. https://doi.org/10.1007/BF02985802
      Li, H., Zhang, Z. E., Zhao, Z. Z., 2019. Data-Mining for Processes in Chemistry, Materials, and Engineering. Processes, 7(3): 151. https://doi.org/10.3390/pr7030151
      Li, S., Chen, J., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
      Nascimento, D. S. C., Coelho, A. L. V., Canuto, A. M. P., 2014. Integrating Complementary Techniques for Promoting Diversity in Classifier Ensembles: A Systematic Study. Neurocomputing, 138: 347-357. https://doi.org/10.1016/j.neucom.2014.01.027
      Shah, M. I., Javed, M. F., Abunama, T., 2021. Proposed Formulation of Surface Water Quality and Modelling Using Gene Expression, Machine Learning, and Regression Techniques. Environmental Science and Pollution Research International, 28(11): 13202-13220. https://doi.org/10.1007/s11356-020-11490-9
      Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201
      Vyas, R., Goel, P., Tambe, S. S., 2015. Genetic Programming Applications in Chemical Sciences and Engineering. In: Gandomi, A. H., Alavi, A. H., Ryan, C., eds., Handbook of Genetic Programming Applications. Springer International Publishing, Cham, 99-140. https://doi.org/10.1007/978-3-319-20883-1_5
      Wong, T. T., 2015. Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-out Cross Validation. Pattern Recognition, 48(9): 2839-2846. doi: 10.1016/j.patcog.2015.03.009
      Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
      Xia, Y. F., Liu, C. Z., Li, Y. Y., et al., 2017. A Boosted Decision Tree Approach Using Bayesian Hyper-Parameter Optimization for Credit Scoring. Expert System with Applications, 78: 225-241. doi: 10.1016/j.eswa.2017.02.017
      Zhang, M. L., Zhou, Z. H., 2007. ML-KNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition, 40: 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019
      Zhang, W. G., Wu, C. Z., Zhong, H., et al., 2021. Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and Random Forest Based on Bayesian Optimization. Geoscience Frontiers, 12: 469-477. https://doi.org/10.1016/j.gsf.2020.03.007
      Zhang, W. G., Zhang, R. H., Wu, C. Z., et al., 2022. Assessment of Basal Heave Stability for Braced Excavations in Anisotropic Clay Using Extreme Gradient Boosting and Random Forest Regression. Underground Space, 7: 233-241. https://doi.org/10.1016/j.undsp.2020.03.001
      Zhang, W. Z., 2014. Research on Consolidation Characteristics of Ultra Soft Soil (Dissertation). Tianjin University, Tianjin, 41-42 (in Chinese with English abstract).
      Zhou, J., 2014. Research on Preconsolidation Pressure of Soil (Dissertation). Wuhan University of Technology, Wuhan, 12-15 (in Chinese with English abstract).
      Zhou, J., Qiu, Y. G., Zhu, S. L., 2021. Estimation of the TBM Advance Rate under Hard Rock Conditions Using XGBoost and Bayesian Optimization. Underground Spaceace, 6: 206-515. https://doi.org/10.1016/j.undsp.2020.05.008
      Zhou, Z. H., 2016. Machine Learning. Tsinghua University Press, Beijing, 171-196 (in Chinese).
      常林越, 王金昌, 朱向荣, 2009. 确定土体前期固结压力的非参数化拟合模型. 岩土力学, 30(5): 1337-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905028.htm
      董红瑶, 王弈丹, 李丽红, 2021. 随机森林优化算法综述. 信息与电脑, 33(17): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XXDL202117011.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      张文振, 2014. 吹填超软土的固结特性试验分析(硕士学位论文). 天津: 天津大学, 41-42.
      周军, 2014. 土先期固结压力问题的研究. (硕士学位论文). 武汉: 武汉理工大学, 12-15.
      周志华, 2016, 机器学习. 北京: 清华大学出版社, 171-196.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(6)

      Article views (930) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return