• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 1
    Jan.  2023
    Turn off MathJax
    Article Contents
    Shi Xuewen, Wu Wei, Hu Haiyan, Liu Lihang, Zhu Yiqing, Pan Renfang, Meng Jianghui, Wang Tao, 2023. The Whole Apertures of Deeply Buried Wufeng-Longmaxi Formation Shale and Their Controlling Factors in Luzhou District, Sichuan Basin. Earth Science, 48(1): 158-172. doi: 10.3799/dqkx.2022.457
    Citation: Shi Xuewen, Wu Wei, Hu Haiyan, Liu Lihang, Zhu Yiqing, Pan Renfang, Meng Jianghui, Wang Tao, 2023. The Whole Apertures of Deeply Buried Wufeng-Longmaxi Formation Shale and Their Controlling Factors in Luzhou District, Sichuan Basin. Earth Science, 48(1): 158-172. doi: 10.3799/dqkx.2022.457

    The Whole Apertures of Deeply Buried Wufeng-Longmaxi Formation Shale and Their Controlling Factors in Luzhou District, Sichuan Basin

    doi: 10.3799/dqkx.2022.457
    • Received Date: 2022-07-26
      Available Online: 2023-02-01
    • Publish Date: 2023-01-25
    • Pore distribution of shale is a key parameter of the shale reservoir, and it is important to estimate shale gas resource reserve and for shale gas exploration and development. To characterize the pore apertures of deeply buried Wufeng-Longmaxi shale in the Luzhou district, carbon dioxide and nitrogen adsorption, high pressure mercury injection and helium expansion porosity were used, combined with the oxidation-reduction condition during the deposition, moisture and TOC. The data show that mesopores were main pore types, accounting for 73% of the total pore volume on average, followed by micropores of 23%, and macropores of 4%. Pore volume changed regularly with the deposited oxidation-reduction environment, and the TOC contents dominantly controlled the pore distributions and pore volumes, especially obvious for pores of less than 10 nm in diameter. Moisture could occupy some pores, and reduce the pore surface area and pore volume, with decrease amounting to 30%. Therefore, pore distributions were jointly controlled by oxidation-reduction condition, TOC and moisture.

       

    • loading
    • Bernard, S., Horsfield, B., Schulz, H. M., et al., 2012a. Geochemical Evolution of Organic⁃Rich Shales with Increasing Maturity: A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany). Marine and Petroleum Geology, 31(1): 70-89. https://doi.org/10.1016/j.marpetgeo.2011.05.010
      Bernard, S., Wirth, R., Schreiber, A., et al., 2012b. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3-11. https://doi.org/10.1016/j.coal.2012.04.010
      Baruch, E. T., Kennedy, M. J., Löhr, S. C., et al., 2015. Feldspar Dissolution⁃Enhanced Porosity in Paleoproterozoic Shale Reservoir Facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bulletin, 99(9): 1745-1770. https://doi.org/10.1306/04061514181
      Cui, J. Q., 2019. Research on Effect of Clay Minerals on Pore Structure and Water Absorption Characteristics of Mudstone (Dissertation). Taiyuan University of Technology, Taiyuan (in Chinese with English abstract).
      Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012a. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
      Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012b. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer⁃Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. https://doi.org/10.1306/08151110188
      Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
      He, X., Li, W. G., Dang, L. R., et al., 2021. Key Technological Challenges and Research Directions of Deep Shale Gas Development. Natural Gas Industry, 41(1): 118-124 (in Chinese with English abstract).
      He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng⁃Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract).
      Houben, M. E., Barnhoorn, A., Wasch, L., et al., 2016. Microstructures of Early Jurassic (Toarcian) Shales of Northern Europe. International Journal of Coal Geology, 165: 76-89. https://doi.org/10.1016/j.coal.2016.08.003
      Hu, D. F., Wei, Z. H., Li, Y. P., et al., 2022. Deep Shale Gas Exploration in Complex Structure Belt of the Southeastern Sichuan Basin: Progress and Breakthrough. Natural Gas Industry, 42(8): 35-44 (in Chinese with English abstract).
      Hu, H. Y., Hao, F., Guo, X. S., et al., 2018. Investigation of Methane Sorption of Overmature Wufeng⁃Longmaxi Shale in the Jiaoshiba Area, Eastern Sichuan Basin, China. Marine and Petroleum Geology, 91: 251-261. https://doi.org/10.1016/j.marpetgeo.2018.01.008
      Hu, H. Y., Hao, F., Lin, J. F., et al., 2017. Organic Matter⁃Hosted Pore System in the Wufeng⁃Longmaxi (O3w⁃S1l) Shale, Jiaoshiba Area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173: 40-50. https://doi.org/10.1016/j.coal.2017.02.004
      Hu, H. Y., Zhang, T. W., Wiggins⁃Camacho, J. D., et al., 2015. Experimental Investigation of Changes in Methane Adsorption of Bitumen⁃Free Woodford Shale with Thermal Maturation Induced by Hydrous Pyrolysis. Marine and Petroleum Geology, 59: 114-128. https://doi.org/10.1016/j.marpetgeo.2014.07.02
      Jiang, Z. X., Tang, X. L., Li, Z., et al., 2016. The Whole⁃Aperture Pore Structure Characteristics and Its Effect on Gas Content of the Longmaxi Formation Shale in the Southeastern Sichuan Basin. Earth Science Frontiers, 23(2): 126-134 (in Chinese with English abstract).
      Klaver, J., Desbois, G., Littke, R., et al., 2015. BIB⁃SEM Characterization of Pore Space Morphology and Distribution in Postmature to Overmature Samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 59: 451-466. https://doi.org/10.1016/j.marpetgeo.2014.09.020
      Li, T. F., Tian, H., Chen, J., et al., 2015. The Application of Low Pressure Gas Adsorption to the Characterization of Pore Size Distribution for Shales: An Example from Southeastern Chongqing Area. Natural Gas Geoscience, 26(9): 1719-1728 (in Chinese with English abstract).
      Li, Y. D., Yang, C., Feng, S., et al., 2017. The Method for Studying Shale Pore Size Distribution by Using Nuclear Magnetic Resonance. Geological Review, 63(S1): 119-120 (in Chinese with English abstract).
      Liu, S. G., Jiao, K., Zhang, J. C., et al., 2021. Research Progress on the Pore Characteristics of Deep Shale Gas Reservoirs: An Example from the Lower Paleozoic Marine Shale in the Sichuan Basin. Natural Gas Industry, 41(1): 29-41 (in Chinese with English abstract).
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer⁃Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix⁃Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Löhr, S. C., Baruch, E. T., Hall, P. A., et al., 2015. Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter? Organic Geochemistry, 87: 119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010
      Lu, Y. Q., Liang, B., Wang, C., et al., 2021. Shale Gas Exploration and Development in the Lower Paleozoic Jiangdong Block of Fuling Gas Field, Sichuan Basin. Oil & Gas Geology, 42(1): 241-250 (in Chinese with English abstract).
      Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194
      Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter⁃Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. https://doi.org/10.1306/07231212048
      Nie, H. K., Li, P., Dang, W., et al., 2022. Enrichment Characteristics and Exploration Directions of Deep Shale Gas of Ordovician⁃Silurian in the Sichuan Basin and Its Surrounding Areas, China. Petroleum Exploration and Development, 49(4): 648-659 (in Chinese with English abstract).
      Pang, H. Q., Xiong, L., Wei, L. M., et al., 2019. Analysis on the Main Geological Factors of Deep Shale Gas Enrichment and High Yield in Southern Sichuan: Taking Weirong Shale Gas Field as an Example. Natural Gas Industry, 39(S1): 78-84 (in Chinese).
      Pommer, M., Milliken, K., 2015. Pore Types and Pore⁃Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. https://doi.org/10.1306/03051514151
      Shi, Z. S., Wu, J., Dong, D. Z., et al., 2021. Pore Types and Pore Size Distribution of the Typical Wufeng⁃Lungmachi Shale Wells in the Sichuan Basin, China. Earth Science Frontiers, 28(1): 249-260 (in Chinese with English abstract).
      Slatt, R. M., O'Brien, N. R., 2011. Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine⁃Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. https://doi.org/10.1306/03301110145
      Wang, G., Li, G. C., Sun, Y. T., et al., 2017. Study on Molecular Simulation of Illite on Hydration Mechanism and Water Absorption Behavior. Coal Science & Technology Magazine, (3): 16-22 (in Chinese with English abstract).
      Wang, H. Y., Shi, Z. S., Sun, S. S., et al., 2021. Characterization and Genesis of Deep Shale Reservoirs in the First Member of the Silurian Longmaxi Formation in Southern Sichuan Basin and Its Periphery. Oil & Gas Geology, 42(1): 66-75 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-9578.2021.01.019
      Wang, M., Guan, Y., Li, C. M., et al., 2018. Qualitative Description and Full⁃Pore⁃Size Quantitative Evaluation of Pores in Lacustrine Shale Reservoir of Shahejie Formation, Jiyang Depression. Oil & Gas Geology, 39(6): 1107-1119 (in Chinese with English abstract).
      Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng⁃Longmaxi Shales, Southern Sichuan Basin. Earth Science, (2): 518-531 (in Chinese with English abstract).
      Xie, G. L., 2020. Pore Structure Characteristics of the Lower Paleozoic Marine Shale in the Sichuan Basin and Their Relationships with Burial Depth of Shale (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Xu, Z. H., Zheng, M. J., Liu, Z. H., et al., 2020. Petrophysical Properties of Deep Longmaxi Formation Shales in the Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(6): 1100-1110 (in Chinese with English abstract).
      Yang, H. Z., Zhao, S. X., Liu, Y., et al., 2019. Main Controlling Factors of Enrichment and High⁃Yield of Deep Shale Gas in the Luzhou Block, Southern Sichuan Basin. Natural Gas Industry, 39(11): 55-63 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2019.11.007
      Yang, R., Hao, F., He, S., et al., 2017. Experimental Investigations on the Geometry and Connectivity of Pore Space in Organic⁃Rich Wufeng and Longmaxi Shales. Marine and Petroleum Geology, 84(6): 225-242. https://doi.org/10.1016/j.marpetgeo.2017.03.033
      Yang, R., He, S., Hu, D. F., et al., 2015. Characteristics and the Main Controlling Factors of Micro⁃Pore Structure of the Shale in Wufeng Formation⁃Longmaxi Formation in Jiaoshiba Area. Geological Science and Technology Information, 34(5): 105-113 (in Chinese with English abstract).
      Yang, R., He, S., Yi, J., et al., 2016. Nano⁃Scale Pore Structure and Fractal Dimension of Organic⁃Rich Wufeng⁃Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE⁃SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70(2): 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
      Yao, C. P., Fu, H. J., Ma, Y. Z., et al., 2022. Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block. Earth Science, 47(5): 1684-1693 (in Chinese with English abstract).
      Zhang, C. L., Zhang, J., Li, W. G., et al., 2019. Deep Shale Reservoir Characteristics and Exploration Potential of Wufeng⁃Longmaxi Formations in Dazu Area, Western Chongqing. Natural Gas Geoscience, 30(12): 1794-1804 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2019.12.014
      Zhang, C. L., Zhao, S. X., Zhang, J., et al., 2021. Analysis and Enlightenment of the Difference of Enrichment Conditions for Deep Shale Gas in Southern Sichuan Basin. Natural Gas Geoscience, 32(2): 248-261 (in Chinese with English abstract).
      Zhang, L. H., He, X., Li, X. G., et al., 2021. Shale Gas Exploration and Development in the Sichuan Basin: Progress, Challenge and Countermeasures. Natural Gas Industry, 41(8): 143-152 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.013
      Zhang, T. W., Ellis, G. S., Ruppel, S. C., et al., 2012. Effect of Organic⁃Matter Type and Thermal Maturity on Methane Adsorption in Shale⁃Gas Systems. Organic Geochemistry, 47: 120-131. https://doi.org/10.1016/j.orggeochem.2012.03.012
      Zhou, S. W., Dong, D. Z., Zhang, J. H., et al., 2021. Optimization of Key Parameters for Porosity Measurement of Shale Gas Reservoirs. Natural Gas Industry, 41(5): 20-29 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.05.003
      崔家庆, 2019. 粘土类矿物对泥岩孔隙结构及吸水特性的影响研究(硕士学位论文). 太原: 太原理工大学.
      何骁, 李武广, 党录瑞, 等, 2021. 深层页岩气开发关键技术难点与攻关方向. 天然气工业, 41(1): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101017.htm
      何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm
      胡东风, 魏志红, 李宇平, 等, 2022. 四川盆地东南部地区复杂构造带深层页岩气勘探进展与突破. 天然气工业, 42(8): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208004.htm
      姜振学, 唐相路, 李卓, 等, 2016. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制. 地学前缘, 23(2): 126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602015.htm
      李腾飞, 田辉, 陈吉, 等, 2015. 低压气体吸附法在页岩孔径表征中的应用——以渝东南地区页岩样品为例. 天然气地球科学, 26(9): 1719-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509014.htm
      李亚丁, 杨成, 冯顺, 等, 2017. 利用核磁共振研究页岩孔径分布的方法. 地质论评, 63(S1): 119-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1059.htm
      刘树根, 焦堃, 张金川, 等, 2021. 深层页岩气储层孔隙特征研究进展——以四川盆地下古生界海相页岩层系为例. 天然气工业, 41(1): 29-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101005.htm
      陆亚秋, 梁榜, 王超, 等, 2021. 四川盆地涪陵页岩气田江东区块下古生界深层页岩气勘探开发实践与启示. 石油与天然气地质, 42(1): 241-250. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101021.htm
      聂海宽, 李沛, 党伟, 等, 2022. 四川盆地及周缘奥陶系‒志留系深层页岩气富集特征与勘探方向. 石油勘探与开发, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm
      庞河清, 熊亮, 魏力民, 等, 2019. 川南深层页岩气富集高产主要地质因素分析——以威荣页岩气田为例. 天然气工业, 39(S1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1014.htm
      施振生, 武瑾, 董大忠, 等, 2021. 四川盆地五峰组‒龙马溪组重点井含气页岩孔隙类型与孔径分布. 地学前缘, 28(1): 249-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101025.htm
      王冠, 李桂臣, 孙元田, 等, 2017. 伊利石水化机理及膨胀特性的分子模拟研究. 煤炭科技, (3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-META201703004.htm
      王红岩, 施振生, 孙莎莎, 等, 2021. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因. 石油与天然气地质, 42(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101007.htm
      王民, 关莹, 李传明, 等, 2018. 济阳坳陷沙河街组湖相页岩储层孔隙定性描述及全孔径定量评价. 石油与天然气地质, 39(6): 1107-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806003.htm
      吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组‒龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049
      谢国梁, 2020. 四川盆地下古生界海相页岩孔隙结构及其与埋深的相关性(博士学位论文). 成都: 成都理工大学.
      徐中华, 郑马嘉, 刘忠华, 等, 2020. 四川盆地南部地区龙马溪组深层页岩岩石物理特征. 石油勘探与开发, 47(6): 1100-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006005.htm
      杨洪志, 赵圣贤, 刘勇, 等, 2019. 泸州区块深层页岩气富集高产主控因素. 天然气工业, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm
      杨锐, 何生, 胡东风, 等, 2015. 焦石坝地区五峰组‒龙马溪组页岩孔隙结构特征及其主控因素. 地质科技情报, 34(5): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505017.htm
      姚程鹏, 伏海蛟, 马英哲, 等, 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021
      张成林, 张鉴, 李武广, 等, 2019. 渝西大足区块五峰组‒龙马溪组深层页岩储层特征与勘探前景. 天然气地球科学, 30(12): 1794-1804. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912013.htm
      张成林, 赵圣贤, 张鉴, 等, 2021. 川南地区深层页岩气富集条件差异分析与启示. 天然气地球科学, 32(2): 248-261. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102008.htm
      张烈辉, 何骁, 李小刚, 等, 2021. 四川盆地页岩气勘探开发进展、挑战及对策. 天然气工业, 41(8): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108019.htm
      周尚文, 董大忠, 张介辉, 等, 2021. 页岩气储层孔隙度测试方法关键参数优化. 天然气工业, 41(5): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202105004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(17)  / Tables(3)

      Article views (1039) PDF downloads(116) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return