• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Chen Wenhong, Yu Bin, Ye Peng, Liu Kan, Ye Longzhen, Yang Zhiyi, 2025. Research on Material Source Factors of Gully-Type Debris Flow Caused by Shallow Landslides. Earth Science, 50(6): 2356-2371. doi: 10.3799/dqkx.2022.469
    Citation: Chen Wenhong, Yu Bin, Ye Peng, Liu Kan, Ye Longzhen, Yang Zhiyi, 2025. Research on Material Source Factors of Gully-Type Debris Flow Caused by Shallow Landslides. Earth Science, 50(6): 2356-2371. doi: 10.3799/dqkx.2022.469

    Research on Material Source Factors of Gully-Type Debris Flow Caused by Shallow Landslides

    doi: 10.3799/dqkx.2022.469
    • Received Date: 2024-02-01
      Available Online: 2025-07-11
    • Publish Date: 2025-06-25
    • Few studies pay attention to revealing the relationship between the amount of landslide material and the formation of gully debris flow, although a large number of shallow landslides in a watershed can lead to gully-type debris. Thus, the landslide source conditions required for the formation of this type of debris flow are evaluated based on the mechanism of debris flow formation. To analyze the relationship between the debris flow by shallow landslides in Baozhuang Village, Fujian, in 2010. And the material model of gully-type debris flow by shallow landslides was proposed. The result shows that the larger the landslides area in the catchment, the greater the possibility of gully-type debris flow. The landslide area (A0), catchment area (A) and soil thickness (h) can be applied to classify the susceptibility class of gully-type debris flow by shallow landslides. For the gullies in the East China region: when the average soil thickness of the catchment is h (m), the total of area where landslides occur (A0) is related to the area of the catchment (A) as: it is very high probabilities of debris flow formation when A0/A≥0.045×(3/h). The probabilities of debris flow formation is medium when 0.02×(3/h)≤A0/A≤0.045×(3/h). The probabilities of debris flow formation is very low when 0.02×(3/h)≥A0/A. When the total area of landslides entering the channel (AL) is related to the area of the catchment (A) as: it is very high probabilities of debris flow formation when AL/A≥0.03×(3/h). The probabilities of debris flow formation is medium when 0.006 5×(3/h)≤AL/A≤0.03×(3/h). The probabilities of debris flow formation is very low when 0.006 5×(3/h)≥AL/A. The empirical models are simple, and the data needed necessary for the input are easily measurable catchment areas and landslides area. The approach may be applied to the analysis debris flow by shallow landslides in other areas due to simplicity, when adapting the threshold parameters according to new local conditions.

       

    • loading
    • Adeline, K. R. M., Chen, M., Briottet, X., et al., 2013. Shadow Detection in Very High Spatial Resolution Aerial Images: A Comparative Study. ISPRS Journal of Photogrammetry and Remote Sensing, 80: 21-38. https://doi.org/10.1016/j.isprsjprs.2013.02.003
      Bordoni, M., Galanti, Y., Bartelletti, C., et al., 2020. The Influence of the Inventory on the Determination of the Rainfall-Induced Shallow Landslides Susceptibility Using Generalized Additive Models. Catena, 193: 104630. https://doi.org/10.1016/j.catena.2020.104630.
      Bai, H. L., Feng, W. K., Yi, X. Y., et al., 2021. Group-Occurring Landslides and Debris Flows Caused by the Continuous Heavy Rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Natural Hazards, 108(3): 3181-3201. https://doi.org/10.1007/s11069-021-04819-1
      Chiang, S. H., Chang, K. T., Mondini, A. C., et al., 2012. Simulation of Event-Based Landslides and Debris Flows at Watershed Level. Geomorphology, 138(1): 306-318. https://doi.org/10.1016/j.geomorph.2011.09.016
      Chen, X. L., Jiang, K., 2021. Modeling Method of Concurrent Emergency Chain Based on Bayesian Network. Chinese Journal of Management Science, 29(10): 165-177(in Chinese with English abstract).
      Cui, P., Guo, J., 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract).
      Cannon, S. H., Gartner, J. E., Rupert, M. G., et al., 2010. Predicting the Probability and Volume of Postwildfire Debris Flows in the Intermountain Western United States. GSA Bulletin, 122(1-2): 127-144. https://doi.org/10.1130/b26459.1
      Dahlquist, M. P., West, A. J., 2019. Initiation and Runout of Post-Seismic Debris Flows: Insights from the 2015 Gorkha Earthquake. Geophysical Research Letters, 46(16): 9658-9668. https://doi.org/10.1029/2019GL083548
      Dou, J., Paudel, U., Oguchi, T., et al., 2015. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terrestrial, Atmospheric and Oceanic Sciences, 26: 227. https://doi.org/10.3319/tao.2014.12.02.07(eosi)
      Fan, L. F., Lehmann, P., McArdell, B., et al., 2017. Linking Rainfall-Induced Landslides with Debris Flows Runout Patterns towards Catchment Scale Hazard Assessment. Geomorphology, 280: 1-15. https://doi.org/10.1016/j.geomorph.2016.10.007
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658. (in Chinese with English abstract).
      Huang, X. H., Guo, F., Deng, M. L., et al., 2020. Understanding the Deformation Mechanism and Threshold Reservoir Level of the Floating Weight-Reducing Landslide in the Three Gorges Reservoir Area, China. Landslides, 17(12): 2879-2894. https://doi.org/10.1007/s10346-020-01435-1
      Hürlimann, M., Abancó, C., Moya, J., et al., 2014. Results and Experiences Gathered at the Rebaixader Debris-Flow Monitoring Site, Central Pyrenees, Spain. Landslides, 11(6): 939-953. https://doi.org/10.1007/s10346-013-0452-y
      Iverson, R. M., Reid, M. E., Lahusen, R. G., 1997. Debris-Flow Mobilization from Landslides. Annual Review of Earth and Planetary Sciences, 25: 85. https://doi.org/10.1146/annurev.earth.25.1.85
      Jakob, M., 2000. The Impacts of Logging on Landslide Activity at Clayoquot Sound, British Columbia. Catena, 38(4): 279-300. https://doi.org/10.1016/s0341-8162(99)00078-8
      Lan, H. X., Zhou, C. H., Wang, L. J., et al., 2004. Landslide Hazard Spatial Analysis and Prediction Using GIS in the Xiaojiang Watershed, Yunnan, China. Engineering Geology, 76(1-2): 109-128. https://doi.org/10.1016/j.enggeo.2004.06.009
      Li, Y. W., Xu, L. R., Zhang, L. L., et al., 2023. Study on Development Patterns and Susceptibility Evaluation of Coseismic Landslides within Mountainous Regions Influenced by Strong Earthquakes. Earth Science, 48(5): 1960-1976(in Chinese with English abstract).
      Li, Z. H., Zhang, C. L., Chen, B., et al., 2022. A Technical Framework of Landslide Prevention Based on Multi-Source Remote Sensing and Its Engineering Application. Earth Science, 47(6): 1901-1916(in Chinese with English abstract).
      Liu, C. N., Dong, J. J., Peng, Y. F., et al., 2009. Effects of Strong Ground Motion on the Susceptibility of Gully Type Debris Flows. Engineering Geology, 104(3-4): 241-253. https://doi.org/10.1016/j.enggeo.2008.10.012
      Liang, Z., Wang, C. M., Ma, D. H., et al., 2021. Exploring the Potential Relationship between the Occurrence of Debris Flow and Landslides. Natural Hazards and Earth System Sciences, 21(4): 1247-1262. https://doi.org/10.5194/nhess-21-1247-2021
      Pradhan, A. M. S., Lee, S. R., Kim, Y. T., 2019. A Shallow Slide Prediction Model Combining Rainfall Threshold Warnings and Shallow Slide Susceptibility in Busan, Korea. Landslides, 16(3): 647-659. https://doi.org/10.1007/s10346-018-1112-z
      Pu, L. M., Zhang, S. W., Wang, R. H. et al., 2016. Analysis of Erosion Gully Information Extraction Based on Multi-Resource Remote Sensing Images. Geography and Geo-Information Science, 32(1): 90-94(in Chinese with English abstract).
      Qi, S., Zhang, Y. L., Zhang, P., et al., 2014. An Assessment Index System for Landslide Risk in Bailong River Basin. Journal of Yangtze River Scientific Research Institute, 31(1): 23-28 (in Chinese with English abstract).
      Qiu, Q. C., Zheng, Q. M., Zhang, N. S., 2010. Meteorological Condition Analysis for the Extraordinarily Geological Hazard in Shunchang, Fujian Province. Geology of Fujian, 29(Suppl. 1): 92-97(in Chinese with English abstract).
      Roering, J. J., Schmidt, K. M., Stock, J. D., et al., 2003. Shallow Landsliding, Root Reinforcement, and the Spatial Distribution of Trees in the Oregon Coast Range. Canadian Geotechnical Journal, 40(2): 237-253. https://doi.org/10.1139/t02-113
      Tang, C., Zhu, J., Chang, M., et al., 2012. An Empirical-Statistical Model for Predicting Debris-Flow Runout Zones in the Wenchuan Earthquake Area. Quaternary International, 250: 63-73. https://doi.org/10.1016/j.quaint.2010.11.020
      van Den Eeckhaut, M., Moeyersons, J., Nyssen, J., et al., 2009. Spatial Patterns of Old, Deep-Seated Landslides: A Case-Study in the Northern Ethiopian Highlands. Geomorphology, 105(3-4): 239-252. https://doi.org/10.1016/j.geomorph.2008.09.027
      Vandromme, R., Thiery, Y., Bernardie, S., et al., 2020. ALICE (Assessment of Landslides Induced by Climatic Events): A Single Tool to Integrate Shallow and Deep Landslides for Susceptibility and Hazard Assessment. Geomorphology, 367: 107307. https://doi.org/10.1016/j.geomorph.2020.107307
      Wang, Y. M., Yin, K. L., 2018. Initiating Mechanism of Typhoon-Triggered Debris Flow. Earth Science, 43(Suppl. 2): 263-270(in Chinese with English abstract).
      Wei, D. G., Jie, Y. J., Huang, T. G., 1997. Regional Geological Structure of Fujian. Regional Geology of China, 16(2): 162-170(in Chinese with English abstract).
      Xia, M. X., Li, Y. Y., Wu, J. M., et al., 2021. Research on Rainfall Early Warning Threshold of Landslide Disaster in Zhangjiajie City Based on 1-D Statistical Model. Journal of Natural Disasters, 30(4): 203-212. https://doi.org/10.13577/j.jnd.2021.0422
      Yang, H. J., Yang, T. Q., Zhang, S. J., et al., 2020. Rainfall-Induced Landslides and Debris Flows in Mengdong Town, Yunnan Province, China. Landslides, 17(4): 931-941. https://doi.org/10.1007/s10346-019-01336-y
      Ye, X. Q., 2018. Planting Performance and High-Yielding Cultivation Techniques of Y Liangyou 8199 in Shunchang County. Fujian Science and Technology of Rice and Wheat, 36(1): 37-39 in Chinese with English abstract.
      Yu, B., Wang, T., Zhu, Y., et al., 2016. Topographical and Rainfall Factors Determining the Formation of Gully-Type Debris Flows Caused by Shallow Landslides in the Dayi Area, Guizhou Province, China. Environmental Earth Sciences, 75(7): 551. https://doi.org/10.1007/s12665-016-5243-z
      Zhang, Q. K., Ling, S. X., Li, X. N., et al., 2020. Comparison of Landslide Susceptibility Mapping Rapid Assessment Models in Jiuzhaigou County, Sichuan Province, China. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1595-1610 (in Chinese with English abstract).
      Zhou, B. F., Lee, D. J., Luo, D. F., et al., 1991. A Guide for Debris-Flows Hazard Mitigation. Science Press, Beijing (in Chinese).
      Zhou, W., Tang, C., Van Asch, T. W. J., et al., 2016. A Rapid Method to Identify the Potential of Debris Flow Development Induced by Rainfall in the Catchments of the Wenchuan Earthquake Area. Landslides, 13(5): 1243-1259. https://doi.org/10.1007/s10346-015-0631-0
      陈雪龙, 姜坤, 2021. 基于贝叶斯网络的并发型突发事件链建模方法. 中国管理科学, 29(10): 165-177.
      崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658.
      李永威, 徐林荣, 张亮亮, 等, 2023. 强震山区地震诱发滑坡发育规律与易发性评估. 地球科学, 48(5): 1960-1976.
      李振洪, 张成龙, 陈博, 等, 2022. 一种基于多源遥感的滑坡防灾技术框架及其工程应用. 地球科学, 47(6): 1901-1916.
      蒲罗曼, 张树文, 王让虎, 等, 2016. 多源遥感影像的侵蚀沟信息提取分析. 地理与地理信息科学, 32(1): 90-94.
      齐识, 张雅莉, 张鹏, 等, 2014. 白龙江流域滑坡危险性评价指标体系的构建. 长江科学院院报, 31(1): 23-28.
      邱泉成, 郑清明, 张能胜, 2010. 福建顺昌特大地质灾害气象条件分析. 福建地质, 29(增刊1): 92-97.
      王一鸣, 殷坤龙, 2018. 台风暴雨型泥石流启动机制. 地球科学, 43(增刊2): 263-270.
      韦德光, 揭育金, 黄廷淦, 1997. 福建省区域地质构造特征. 中国区域地质, 16(2): 162-170.
      叶喜琴, 2018. Y两优8199在顺昌县种植表现与高产栽培技术. 福建稻麦科技, 36(1): 37-39.
      张玘恺, 凌斯祥, 李晓宁, 等, 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究. 岩石力学与工程学报, 39(8): 1595-1610.
      周必凡, 李德基, 罗德富, 等, 1991. 泥石流防治指南. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(21)  / Tables(2)

      Article views (103) PDF downloads(23) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return