• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Zhang Zhen, Hu Kehong, Lu Yijie, Zhang Shasha, Huang Danni, 2024. Glacier Movement Characteristics and Influencing Factors in High Mountain Asia. Earth Science, 49(8): 3010-3019. doi: 10.3799/dqkx.2022.482
    Citation: Zhang Zhen, Hu Kehong, Lu Yijie, Zhang Shasha, Huang Danni, 2024. Glacier Movement Characteristics and Influencing Factors in High Mountain Asia. Earth Science, 49(8): 3010-3019. doi: 10.3799/dqkx.2022.482

    Glacier Movement Characteristics and Influencing Factors in High Mountain Asia

    doi: 10.3799/dqkx.2022.482
    • Received Date: 2022-12-01
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • Under climate change, glacier movement controls mass transport changes, which further leads to the response of changes in glacier length, area and thickness. However, there are differences on response time and degree for glaciers in different scales and types. For further understanding the mechanism of heterogeneous glacier changes, the spatial and temporal characteristics of glacier movement in the High Mountain Asia were analyzed by using ITS_LIVE glacier velocity data. And the influencing factors of glacier movement, glacier velocity change were analysed by Geodetector and correlation analysis. The results are as follows: The characteristic values of glacier movement are larger in the southeastern Tibetan Plateau and the Hindu Kush, but smaller in the West Kunlun, the eastern Tianshan and the eastern Tibetan Plateau. Most glaciers in the High Mountain Asia were slowing down during 2000-2016. Glaciers in Hengduan and Nianqentanglha Mountains decelerate most dramatically. In contrast, West Kunlun experience slightly accelerated glacier movement. Glacier movement is mainly controlled by glacier length and area (thickness), as well as terrain and climate factors. The change of glacier mass balance or thickness is the most important reason for glacier movement change.

       

    • loading
    • Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/ngeo2999
      Dehecq, A., Gourmelen N., Gardner, A. S., et al., 2018. Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain Asia. Nature Geoscience, 12(1): 22-27. https://doi.org/10.1038/s41561-018-0271-9
      Gardelle, J., Berthier, E., Arnaud, Y., et al., 2013. Region-wide Glacier Mass Balances Over the Pamir-Karakoram-Himalaya During 1999-2011. The Cryosphere, 7(4): 1263-1286. https://doi.org/10.5194/tc-7-1263-2013
      Guo, W. Q., Zhang, Z., Wu, K. P., et al., 2022. A Review on the Advances in Surge-Type Glacier Study. Journal of Glaciology and Geocryology, 44(3): 954-970(in Chinese with English abstract).
      Hewitt, K., 2005. The Karakoram Anomaly? Glacier Expansion and the 'Elevation Effect, ' Karakoram Himalaya. Mountain Research and Development, 25(4): 332-340. https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
      Horgan, H. J., Anderson, B., Alley, R. B., et al., 2015. Glacier Velocity Variability Due to Rain-induced Sliding and Cavity Formation. Earth and Planetary Science Letters, 432, 273-282. https://doi.org/10.1016/j.epsl. 2015. 10.016 doi: 10.1016/j.epsl.2015.10.016
      Huang, D. N., Zhang, Z., Zhang, S. S., et al., 2021. Characteristics of Glacier Movement in the Eastern Pamir Plateau. Arid Land Geography, 44(1): 131-140(in Chinese with English abstract).
      Huang, M. H., Sun, Z. Z., 1982. Some Flow Characteristics of Continental-Type Glaciers in China. Journal of Glaciology and Geocryology, 4(2): 35-45(in Chinese with English abstract).
      Immerzeel, W. W., van Beek L. P. H., Bierkens M. F. P., 2010. Climate Change Will Affect the Asian Water Towers. Science, 328(5984): 1382-1385. https://doi.org/10.1126/science.1183188
      Kääb, A., 2005. Combination of SRTM3 and Repeat ASTER Data for Deriving Alpine Glacier Flow Velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94(4): 463-474. https://doi.org/10.1016/j.rse.2004.11.003
      Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984(in Chinese with English abstract).
      Lv, M. Y., Guo, H. D., Lu, X. C., et al., 2019. Characterizing the Behaviour of Surge- and Non-Surge-Type Glaciers in the Kingata Mountains, Eastern Pamir, from 1999 to 2016. The Cryosphere, 13(1): 219-236. https://doi.org/10.5194/tc-13-219-2019
      Paul, F., Bolch, T., Kääb, A., et al., 2015. The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products. Remote Sensing of Environment, 162: 408-426. https://doi.org/10.1016/j.rse.2013.07.043
      Scherler, D., Bookhagen, B., Strecker, M. R., 2011. Spatially Variable Response of Himalayan Glaciers to Climate Change Affected by Debris Cover. Nature Geoscience, 4(3): 156-159. https://doi.org/10.1038/ngeo1068
      Usman, M., Furuya, M., 2018. Interannual Modulation of Seasonal Glacial Velocity Variations in the Eastern Karakoram Detected by ALOS-1/2 Data. Journal of Glaciology, 64: 465-476. https://doi.org/10.1017/jog.2018.39
      Wang, J. F., Xu, C. D., 2017. Geodetector: Principle and Prospective. Acta Geographica Sinica, 72(1): 116-134(in Chinese with English abstract).
      Wang, X., Liu, Q. H., Jiang, L. H., et al., 2015. Characteristics and Influence Factors of Glacier Surface Flow Velocity in the Everest Region, the Himalayas Derived from ALOS/PALSAR Images. Journal of Glaciology and Geocryology, 37(3): 570-579(in Chinese with English abstract).
      Xu, J. L., Zhang, S. Q., Han, H. D., et al., 2011. Change of the Surface Velocity of Koxkar Baxi Glacier Interpreted from Remote Sensing Data, Tianshan Mountains. Journal of Glaciology and Geocryology, 33(2): 268-275 (in Chinese with English abstract).
      Yan, X. G., Ma, J. Z., Ma, X. Y., et al., 2020. Hydrothermal Combination and Geometry Control the Spatial and Temporal Rhythm of Glacier Flow. Science of The Total Environment, 760: 144315-144327. https://doi.org/10.1016/j.scitotenv.2020.144315
      Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949(in Chinese with English abstract).
      Yu, B., He, Y. X., Liu, Y., 2022. Quantitative Susceptibility Assessment of Breach of Moraine-Dammed Lakes. Earth Science, 47(6): 1999-2014(in Chinese with English abstract).
      Yao, T., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663-667. https://doi.org/10.1038/Nclimate1580
      Zhang, Q., Zheng, Y. T., Zhang L., et al., 2020. South Inylchek Glacier Surface Motion Extraction and Analysis Based on Time-Series Pixel Tracking Algorithm. Remote Sensing Technology and Application, 35(6): 1273-1282(in Chinese with English abstract).
      Zhang, Y., Liu, S. Y., 2017. Research Progress on Debris Thickness Estimation and Its Effect on Debris-Covered Glaciers in Western China. Acta Geographica Sinica, 72(9): 1606-1620(in Chinese with English abstract).
      郭万钦, 张震, 吴坤鹏, 等, 2022. 跃动冰川研究进展. 冰川冻土, 44(3): 954-970. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202203019.htm
      黄丹妮, 张震, 张莎莎, 等, 2021. 东帕米尔高原冰川运动特征分析. 干旱区地理, 44(1): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202101016.htm
      黄茂桓, 孙作哲. 1982. 我国大陆型冰川运动的某些特征. 冰川冻土, 4(2): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198202005.htm
      李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
      王劲峰, 徐成东. 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201905015.htm
      王欣, 刘琼欢, 蒋亮虹, 等, 2015. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析. 冰川冻土, 37(3): 570-579. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201503002.htm
      许君利, 张世强, 韩海东, 等, 2011. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析. 冰川冻土, 33(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201102009.htm
      杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰-岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
      余斌, 何元勋, 刘秧. 2022. 冰碛湖溃决易发性的定量评价. 地球科学, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161
      张齐民, 郑一桐, 张露, 等, 2020. 基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析. 遥感技术与应用, 35(6): 1273-1282. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202006003.htm
      张勇, 刘时银, 2017. 中国冰川区表碛厚度估算及其影响研究进展. 地理学报, 72(9): 1606-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201709007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(6)

      Article views (619) PDF downloads(82) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return