• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Ji Bo, Li Xiangmin, Shi Chao, Yu Jiyuan, Wang Guoqiang, 2024. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian. Earth Science, 49(7): 2490-2507. doi: 10.3799/dqkx.2022.484
    Citation: Ji Bo, Li Xiangmin, Shi Chao, Yu Jiyuan, Wang Guoqiang, 2024. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian. Earth Science, 49(7): 2490-2507. doi: 10.3799/dqkx.2022.484

    Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian

    doi: 10.3799/dqkx.2022.484
    • Received Date: 2022-08-15
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • The Baiyin Group, which is the ore-hosted strata in Baiyin ore field, is located at the southeast of North Qilian. The research of isotope chronology, petrology and whole-rock geochemistry was carried out on the bimodal volcanic rocks to reveal their ages, petrogenesis and forming environment. LA-ICP-MS zircon U-Pb dating results show that the group age of the rhyolites are 473.0±1.7 Ma and 473.9±2.1 Ma (206Pb/238U ages), and it can be confirmed that the rhyolite suite formed during the Early Ordovician. The basalt samples, which are regarded as the low-K sub-alkaline tholeiitic series, have geochemical characteristics including high Al2O3, low K2O, TiO2 and P2O5. The rhyolitic rocks (SiO2 > 70%), which belong to cold-wet-oxidized rhyolite, exhibit low FeOT/MgO values (2.44-2.80) and total REE content. With enrichment in incompatible element (Ba, Th, U), obvious negative anomalies of Nb, Ta, Ti and no obvious Eu anomalies (δEu=0.76-0.92), the bimodal volcanic rocks show the geochemical features of island arc magma. The rhyolite zircon εHf(t) values range from -4.14 to 14.78 with Hf Model ages (tDM2) varying from 1 707 Ma to 505 Ma. These features can be concluded that the basalt derived from partial melting of depleted mantle under the effect of subduction fluids and crustal contamination. Meanwhile, the rhyolite may be derived from partial melting of crustal material with a small amount of mantle-derived magma, therefore they are not comagma. The petrology and geochemical information of bimodal volcanic rocks from Baiyin Group indicate they formed in transitional environment from island arc to back-arc basin when northward subduction happened in Early Ordovician.

       

    • loading
    • Bachmann, O., Bergantz, G. W., 2008. Rhyolites and Their Source Mushes across Tectonic Settings. Journal of Petrology, 49(12): 2277-2285. https://doi.org/10.1093/petrology/egn068
      Cen, T., Li, W. X., Tao, J. H., et al., 2017. Geochronology, Geochemistry and Zircon Hf Isotope for Banshi and Caifang Volcanic Rocks from Southern Jiangxi Province and Their Geological Implications. Geotectonica et Metallogenia, 41(5): 933-949 (in Chinese with English abstract).
      Chen, F. K., Siebel, W., Satir, M., et al., 2002. Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone. International Journal of Earth Sciences, 91(3): 469-481. https://doi.org/10.1007/s00531-001-0239-6
      Chen, S., Niu, Y. L., Sun, W. L., et al., 2015. On the Origin of Mafic Magmatic Enclaves (MMEs) in Syn-Collisional Granitoids: Evidence from the Baojishan Pluton in the North Qilian Orogen, China. Mineralogy and Petrology, 109(5): 577-596. https://doi.org/10.1007/s00710-015-0383-5
      Chen, S., Niu, Y. L., Li, J. Y., et al., 2016. Syn-Collisional Adakitic Granodiorites Formed by Fractional Crystallization: Insights from Their Enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan Pluton, North Qilian Orogen at the Northern Margin of the Tibetan Plateau. Lithos, 248-251: 455-468. https://doi.org/10.1016/j.lithos.2016.01.033
      Christiansen, R. L., 1984. Yellowstone Magmatic Evolution: Its Bearing on Understanding Large-Volume Explosive Volcanism. In: Jr Boyd, F. R., ed., Explosive Volcanism: Inception, Evolution and Hazards. National Academy Press, Washington, D. C..
      Condie, K. C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1): 95-101. https://doi.org/10.1016/s0024-4937(98)00056-5
      Cull, J. P., O'Reilly, S. Y., Griffin, W. L., 1991. Xenolith Geotherms and Crustal Models in Eastern Australia. Tectonophysics, 192(3-4): 359-366. https://doi.org/10.1016/0040-1951(91)90109-6
      Deering, C. D., Gravley, D. M., Vogel, T. A., et al., 2010. Origins of Cold-Wet-Oxidizing to Hot-Dry-Reducing Rhyolite Magma Cycles and Distribution in the Taupo Volcanic Zone, New Zealand. Contributions to Mineralogy and Petrology, 160(4): 609-629. https://doi.org/10.1007/s00410-010-0496-0
      Dong, K., 2018. Petrogenic, Metallogenetic Environment and Its Exploration Significance in Baiyinchang Copper Deposit, Gansu Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Du, Z. Z., 2014. Research on Mineralization of the Baiyinchang Copper Multimetal Field, Gansu Province, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Edwards, C. M. H., Morris, J. D., Thirlwall, M. F., 1993. Separating Mantle from Slab Signatures in Arc Lavas Using B/Be and Radiogenic Isotope Systematics. Nature, 362(6420): 530-533. https://doi.org/10.1038/362530a0
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      Geist, D., Howard, K. A., Larson, P., 1995. The Generation of Oceanic Rhyolites by Crystal Fractionation: The Basalt-Rhyolite Association at Volcán Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4): 965-982. https://doi.org/10.1093/petrology/36.4.965
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Guo, J., Li, Y. S., Zhang, J. X., et al., 2021. Formation Age and Tectonic Environment of Shuidongxia Ophiolite in North Qilian Mountains. Earth Science, 46(5): 1644-1656 (in Chinese with English abstract).
      Guo, Y. S., Wang, J. R., Fu, S. M., et al., 2003. Geochemical Constraints on the Genesis and Source Characteristics of Early and Middle Cambrian Acid Volcanic Rocks in Baiyinchang Ore Field, Gansu Province. Journal of Lanzhou University (Natural Sciences), 39(5): 95-100 (in Chinese with English abstract).
      He, S. P., Wang, H. L., Chen, J. L., et al., 2006. A LA-ICP-MS U-Pb Chronological Study of Zircons from Meta-Acidic Volcanics in Baiyin Orefield, Gansu Province: New Evidence for Metallogenic Age of Baiyin Type Massive Sulfide Deposits. Mineral Deposits, 25(4): 401-411 (in Chinese with English abstract).
      Hess, P. C., 1992. Phase Equilibria Constraints on the Origin of Ocean Floor Basalts. In: Morgan, J. P., Blackman, D. K., Sinton, J. M., eds., Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Washington, D. C., 67-102. https://doi.org/10.1029/gm071p0067
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Ishizuka, O., Taylor, R. N., Geshi, N., et al., 2015. Progressive Mixed-Magma Recharging of Izu-Oshima Volcano, Japan: A Guide to Magma Chamber Volume. Earth and Planetary Science Letters, 430: 19-29. https://doi.org/10.1016/j.epsl.2015.08.004
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793-834. https://doi.org/10.1093/petrology/egg112
      Lara, P., Oyhantçabal, P., Dadd, K., 2017. Post-Collisional, Late Neoproterozoic, High-Ba-Sr Granitic Magmatism from the Dom Feliciano Belt and Its Cratonic Foreland, Uruguay: Petrography, Geochemistry, Geochronology, and Tectonic Implications. Lithos, 277: 178-198. https://doi.org/10.1016/j.lithos.2016.11.026
      Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 225-231. doi: 10.1016/j.epsl.2014.10.042
      Li, X. M., Ma, Z. P., Sun, J. M., et al., 2009. A LA-ICP-MS Chronological Study of Basic Volcanics in Baiyin Orefield, Gansu, China. Geological Bulletin of China, 28(7): 901-906 (in Chinese with English abstract).
      Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2018. Late Neoproterozoic to Early Paleozoic Volcanism and Iron-Copper Polyme-Tallic Mineralization of the Qilian Mountain. Geological Bulletin of China, 37(4): 693-703 (in Chinese with English abstract).
      Li, Y., Fu, G. M., Miao, Q., et al., 2009. Geochemical Characteristics and Tectonic Setting of Intermediate-Basic Volcanic Rocks in Baiyin Area, Gansu Province. Journal of Lanzhou University (Natural Sciences), 45(S1): 55-60 (in Chinese with English abstract).
      Liao, F. Y., Chen, W., Cao, X. F., et al., 2020. Petrogenesis and Forming Environment of Monzonitic Granite in Yushishan Nb-Ta Mining Area, Akesai, Gansu Province: Evidences from Chronology and Geochemistry. Earth Science, 45(12): 4589-4603 (in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Marsaglia, K. M., 1995. Interarc and Back-Arc Basin. In: Busby, C. J., Ingersoll, R. V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 299-329.
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., et al. 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235. https://doi.org/10.1016/j.chemgeo.2008.06.040
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. John Wiley and Sons, Chichester, 525-548.
      Pearce, J. A., Parkinson, I. J., 1993. Trace Element Models for Mantle Melting: Application to Volcanic Arc Petrogenesis. Geological Society of London Special Publications, 76(1): 373-403. https://doi.org/10.1144/GSL.SP.1993.076.01.19
      Pearce, J. A., van der Laan, S. R., Arculus, R. J., et al., 1992. Boninite and Harzburgite from ODP Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. Proceedings of the Ocean Drilling Program Scientific Results, 125: 623-659. https://doi.org/10.2973/odp.proc.sr.125.172.1992
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Qin, H. P., Wu, C. L., Wang, C. S., et al., 2014. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of High Sr / Y-Type Granite from Xigela, Eastern Qilian Area. Acta Petrologica Sinica, 30(12): 3759-3771 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tatsumi, Y., Eggins, S. M., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge.
      Turner, S., Foden, J., George, R., et al., 2003. Rates and Processes of Potassic Magma Evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. Journal of Petrology, 44(3): 491-515. https://doi.org/10.1093/petrology/44.3.491
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, C. Y., Zhang, Q., Qian, Q., et al., 2005. Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic Evolution of the North Qilian Orogenic Belt. The Journal of Geology, 113(1): 83-94. https://doi.org/10.1086/425970
      Wang, J. R., Wu, C. J., Cai, Z. H., et al., 2006. Early Paleozoic High-Mg Adakite from Yindongliang in the Eastern Section of the North Qilian: Implications for Geodynamics and Cu-Au Mineralization. Acta Petrologica Sinica, 22(11): 2655-2664 (in Chinese with English abstract).
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wilson, M., Wilson, B., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London. https://doi.org/10.1007/978-94-010-9388-0
      Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
      Wu, C. L., Gao, Y. H., Frost, B. R., et al., 2011. An Early Palaeozoic Double-Subduction Model for the North Qilian Oceanic Plate: Evidence from Zircon SHRIMP Dating of Granites. International Geology Review, 53(2): 157-181. https://doi.org/10.1080/00206810902965346
      Wu, C. L., Xu, X. Y., Gao, Q. M., et al., 2010. Frost RB and Wooden JL. 2010. Early Palaezoic Grranitoid Magmatism and Tectonic Evolution in North Qilian, NW China. Acta Petrologica Sinica, 26(4): 1027-1044 (in Chinese with English abstract).
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Xia, L. Q., Li, X. M., Yu, J. Y., et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain. Geology in China, 43(4): 1087-1138 (in Chinese with English abstract).
      Xia, L. Q., Xia, Z. C., Xu, X. Y., 1995. Dynamics of Tectonic-Volcanic Magma Evolution in North Qilian Mountains. Northwest Geoscience, (1): 1-28 (in Chinese).
      Xia, L. Q., Xia, Z. C., Xu, X. Y., 1998. Early Palaeozoic Mid-Ocean Ridge-Ocean Island and Back-Arc Basin Volcanism in the North Qilian Mountains. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract).
      Xia, L. Q., Xia, Z. C., Xu, X. Y., 2003. Magmagenesis of Ordovician Back-Arc Basins in the Northern Qilian Mountains. Geology in China, 30(1): 48-60 (in Chinese with English abstract).
      Xiong, Z. L., Zhang, H. F., Zhang, J., 2012. Petrogenesis and Tectonic Implications of the Maozangsi and Huangyanghe Granitic Intrusions in Lenglongling Area, the Eastern Part of North Qilian Mountains, NW China. Earth Science Frontiers, 19(3): 214-227 (in Chinese with English abstract).
      Xu, Y. W., Li, C. D., Zhao, L. G., et al., 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732-2750 (in Chinese with English abstract).
      Yu, S. Y., Zhang, J. X., Qin, H. P., et al., 2015. Petrogenesis of the Early Paleozoic Low-Mg and High-Mg Adakitic Rocks in the North Qilian Orogenic Belt, NW China: Implications for Transition from Crustal Thickening to Extension Thinning. Journal of Asian Earth Sciences, 107: 122-139. https://doi.org/10.1016/j.jseaes.2015.04.018
      Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Zhang, H. R., Zhao, J. L., Yu, H. Y., 2019. Petrogenesis and Tectonic Implications of the Laohushan Quartz Diorite from the Eastern Part of North Qilian Orogen, NW China. Geological Journal of China Universities, 25(5): 641-653 (in Chinese with English abstract).
      岑涛, 李武显, 陶继华, 等, 2017. 赣南版石‒蔡坊火山岩年代学、地球化学和锆石Hf同位素特征及其地质意义. 大地构造与成矿学, 41(5): 933-949. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201705010.htm
      董凯, 2018. 甘肃白银厂铜矿成岩‒成矿环境及其找矿意义(博士学位论文). 武汉: 中国地质大学.
      杜泽忠, 2014. 甘肃白银厂铜多金属矿田成矿作用研究(博士学位论文). 北京: 中国地质大学.
      郭晶, 李云帅, 张建新, 等, 2021. 北祁连水洞峡蛇绿岩形成时代与构造环境. 地球科学, 46(5): 1644-1656. doi: 10.3799/dqkx.2020.176
      郭原生, 王金荣, 付善明, 等, 2003. 甘肃白银厂矿田早中寒武世酸性火山岩成因及源区特征的地球化学制约. 兰州大学学报(自然科学版), 39(5): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200305022.htm
      何世平, 王洪亮, 陈隽璐, 等, 2006. 甘肃白银矿田变酸性火山岩锆石LA-ICP-MS测年——白银式块状硫化物矿床形成时代新证据. 矿床地质, 25(4): 401-411. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604004.htm
      李向民, 马中平, 孙吉明, 等, 2009. 甘肃白银矿田基性火山岩的LA-ICP-MS同位素年代学. 地质通报, 28(7): 901-906. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200907012.htm
      李向民, 余吉远, 王国强, 等, 2018. 祁连山新元古代‒早古生代火山作用与铁‒铜多金属成矿. 地质通报, 37(4): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201804016.htm
      李莹, 付国民, 苗箐, 等, 2009. 甘肃白银地区中基性火山岩岩石地球化学特征及构造背景. 兰州大学学报(自然科学版), 45(S1): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK2009S1014.htm
      廖风云, 陈威, 曹晓峰, 等, 2020. 甘肃阿克塞余石山铌钽矿区二长花岗岩成因和形成环境: 来自年代学及地球化学的证据. 地球科学, 45(12): 4589-4603. doi: 10.3799/dqkx.2019.260
      秦海鹏, 吴才来, 王次松, 等, 2014. 祁连东部西格拉高Sr/Y型花岗岩LA-ICP-MS锆石U-Pb定年及其地球化学特征. 岩石学报, 30(12): 3759-3771. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412024.htm
      王金荣, 吴春俊, 蔡郑红, 等, 2006. 北祁连山东段银硐粱早古生代高镁埃达克岩: 地球动力学及成矿意义. 岩石学报, 22(11): 2655-2664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611003.htm
      吴才来, 徐学义, 高前明, 等, 2010. 北祁连早古生代花岗质岩浆作用及构造演化. 岩石学报, 26(4): 1027-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004004.htm
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      夏林圻, 李向民, 余吉远, 等, 2016. 祁连山新元古代中‒晚期至早古生代火山作用与构造演化. 中国地质, 43(4): 1087-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604002.htm
      夏林圻, 夏祖春, 徐学义, 1995. 北祁连山构造‒火山岩浆演化动力学. 西北地质科学, (1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK501.000.htm
      夏林圻, 夏祖春, 徐学义, 1998. 北祁连山早古生代洋脊‒洋岛和弧后盆地火山作用. 地质学报, 72(4): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199804001.htm
      夏林圻, 夏祖春, 徐学义, 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因. 中国地质, 30(1): 48-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200301005.htm
      熊子良, 张宏飞, 张杰, 2012. 北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的岩石成因及其构造意义. 地学前缘, 19(3): 214-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203023.htm
      许雅雯, 李承东, 赵利刚, 等, 2021. 大别山北缘定远组双峰式火山岩‒新元古代晚期裂解事件记录. 地球科学, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322
      张海瑞, 赵姣龙, 于汇洋, 2019. 北祁连造山带东段老虎山石英闪长岩成因及其地质意义. 高校地质学报, 25(5): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201905001.htm
    • dqkxzx-49-7-2490-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (385) PDF downloads(56) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return