Citation: | Cao Jun, Chen Miaomiao, Wan Shumin, Wang Huili, Yi Hui, Lei Hengcong, 2024. Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China. Earth Science, 49(7): 2448-2474. doi: 10.3799/dqkx.2022.490 |
Aghazadeh, M., Prelević, D., Badrzadeh, Z., et al., 2015. Geochemistry, Sr-Nd-Pb Isotopes and Geochronology of Amphibole- and Mica-bearing Lamprophyres in Northwestern Iran: Implications for Mantle Wedge Heterogeneity in a Palaeo-Subduction Zone. Lithos, 216-217: 352-369. https://doi.org/10.1016/j.lithos.2015.01.001
|
Alt, J. C., Teagle, D. A. H., 1999. The Uptake of Carbon during Alteration of Ocean Crust. Geochimica et Cosmochimica Acta, 63(10): 1527-1535. https://doi.org/10.1016/S0016-7037(99)00123-4
|
Ammannati, E., Jacob, D. E., Avanzinelli, R., et al., 2016. Low Ni Olivine in Silica-Undersaturated Ultrapotassic Igneous Rocks as Evidence for Carbonate Metasomatism in the Mantle. Earth and Planetary Science Letters, 444: 64-74. https://doi.org/10.1016/j.epsl.2016.03.039
|
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
|
Batki, A., Pál-Molnár, E., Dobosi, G., et al., 2014. Petrogenetic Significance of Ocellar Camptonite Dykes in the Ditrău Alkaline Massif, Romania. Lithos, 200-201: 181-196. https://doi.org/10.1016/j.lithos.2014.04.022
|
Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999. Lu-Hf Isotope Systematics of Garnet Pyroxenites from Beni Bousera, Morocco: Implications for Basalt Origin. Science, 283(5406): 1303-1306. https://doi.org/10.1126/science.283.5406.1303
|
Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
|
Cao, J., Wang, C. Y., Xing, C. M., et al., 2014. Origin of the Early Permian Wajilitag Igneous Complex and Associated Fe-Ti Oxide Mineralization in the Tarim Large Igneous Province, NW China. Journal of Asian Earth Sciences, 84: 51-68. https://doi.org/10.1016/j.jseaes.2013.09.014
|
Cao, J., Wang, X., Tao, J. H., 2019. Petrogenesis of the Piqiang Mafic-Ultramafic Layered Intrusion and Associated Fe-Ti-V Oxide Deposit in Tarim Large Igneous Province, NW China. International Geology Review, 61(18): 2249-2275. https://doi.org/10.1080/00206814.2019.1584867
|
Chen, J., Gong, Y. L., Chen, L., et al., 2021. New Advances in Magnesium Isotope Geochemistry and Its Application to Carbonatite Rocks. Earth Science, 46(12): 4366-4389 (in Chinese with English abstract).
|
Cheng, Z. G., 2016. Study on the Kimberlitic Rocks, Nephelinites, and Carbonatites within Tarim Large Igneous Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Cheng, Z. G., Zhang, Z. C., Hou, T., et al., 2015. Petrogenesis of Nephelinites from the Tarim Large Igneous Province, NW China: Implications for Mantle Source Characteristics and Plume-Lithosphere Interaction. Lithos, 220-223: 164-178. https://doi.org/10.1016/j.lithos.2015.02.002
|
Cheng, Z. G., Zhang, Z. C., Hou, T., et al., 2017. Decoupling of Mg-C and Sr-Nd-O Isotopes Traces the Role of Recycled Carbon in Magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159-178. https://doi.org/10.1016/j.gca.2016.12.036
|
Cheng, Z. G., Zhang, Z. C., Wang, Z. C., et al., 2020. Petrogenesis of Transitional Large Igneous Province: Insights from Bimodal Volcanic Suite in the Tarim Large Igneous Province. Journal of Geophysical Research : Solid Earth, 125(5): e2019JB018382. https://doi.org/10.1029/2019JB018382
|
Cheng, Z. G., Zhang, Z. C., Xie, Q. H., et al., 2018. Subducted Slab-Plume Interaction Traced by Magnesium Isotopes in the Northern Margin of the Tarim Large Igneous Province. Earth and Planetary Science Letters, 489: 100-110. https://doi.org/10.1016/j.epsl.2018.02.039
|
Dasgupta, R., Hirschmann, M. M., McDonough, W. F., et al., 2009. Trace Element Partitioning between Garnet Lherzolite and Carbonatite at 6.6 and 8.6 GPa with Applications to the Geochemistry of the Mantle and of Mantle-Derived Melts. Chemical Geology, 262(1-2): 57-77. https://doi.org/10.1016/j.chemgeo.2009.02.004
|
Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1-2): 73-85. https://doi.org/10.1016/j.epsl.2004.08.004
|
Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076
|
Deng, L. X., Liu, Y. S., Zong, K. Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127 (in Chinese with English abstract).
|
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821X(81)90153-9
|
Elburg, M., Vroon, P., van der Wagt, B., et al., 2005. Sr and Pb Isotopic Composition of Five USGS Glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chemical Geology, 223(4): 196-207. https://doi.org/10.1016/j.chemgeo.2005.07.001
|
Ernst, R. E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139025300
|
Foley, S. F., Prelević, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025
|
Foley, S., 1992. Petrological Characterization of the Source Components of Potassic Magmas: Geochemical and Experimental Constraints. Lithos, 28(3): 187-204. https://doi.org/10.1016/0024-4937(92)90006-K
|
Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1): 237-262. https://doi.org/10.1016/S0024-4937(99)00031-6
|
Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2012. The Paleozoic Northern Margin of the Tarim Craton: Passive or Active? Lithos, 142-143: 1-15. https://doi.org/10.1016/j.lithos.2012.02.010
|
Gerbode, C., Dasgupta, R., 2010. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2.9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 51(10): 2067-2088. https://doi.org/10.1093/petrology/egq049
|
Giri, R. K., Chalapathi Rao, N. V., Rahaman, W., et al., 2021. Paleoproterozoic Calc-Alkaline Lamprophyres from the Sidhi Gneissic Complex, India: Implications for Plate Tectonic Evolution of the Central Indian Tectonic Zone. Precambrian Research, 362: 106316. https://doi.org/10.1016/j.precamres.2021.106316
|
Goto, A., Tatsumi, Y., 1996. Quantitative Analysis of Rock Samples by an X-Ray Fluorescence Spectrometer (Ⅱ). The Rigaku Journal, 13: 20-39.
|
Guo, Z. J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016
|
Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 214(1-2): 357-368. https://doi.org/10.1016/S0012-821X(03)00361-3
|
Heinonen, J. S., Spera, F. J., Bohrson, W. A., 2022. Thermodynamic Limits for Assimilation of Silicate Crust in Primitive Magmas. Geology, 50(1): 81-85. https://doi.org/10.1130/g49139.1
|
Herzberg, C., 2011. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology, 52(1): 113-146. https://doi.org/10.1093/petrology/egq075
|
Herzberg, C., 2006. Petrology and Thermal Structure of the Hawaiian Plume from Mauna Kea Volcano. Nature, 444(7119): 605-609. https://doi.org/10.1038/nature05254
|
Howarth, G. H., Harris, C., 2017. Discriminating between Pyroxenite and Peridotite Sources for Continental Flood Basalts (CFB) in Southern Africa Using Olivine Chemistry. Earth and Planetary Science Letters, 475: 143-151. https://doi.org/10.1016/j.epsl.2017.07.043
|
John, T., Klemd, R., Klemme, S., et al., 2011. Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition. Contributions to Mineralogy and Petrology, 161(1): 35-45. https://doi.org/10.1007/s00410-010-0520-4
|
Kamenetsky, V. S., Maas, R., Kamenetsky, M. B., et al., 2017. Multiple Mantle Sources of Continental Magmatism: Insights from "High-Ti" Picrites of Karoo and Other Large Igneous Provinces. Chemical Geology, 455: 22-31. https://doi.org/10.1016/j.chemgeo.2016.08.034
|
Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
|
Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., et al., 2013. Melting and Phase Relations of Carbonated Eclogite at 9-21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 54(8): 1555-1583. https://doi.org/10.1093/petrology/egt023
|
Klemme, S., Blundy, J. D., Wood, B. J., 2002. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109-3123. https://doi.org/10.1016/S0016-7037(02)00859-1
|
Kogiso, T., Hirschmann, M. M., Frost, D. J., 2003. High-Pressure Partial Melting of Garnet Pyroxenite: Possible Mafic Lithologies in the Source of Ocean Island Basalts. Earth and Planetary Science Letters, 216(4): 603-617. https://doi.org/10.1016/S0012-821X(03)00538-7
|
Kong, W. L., Zhang, Z. C., Cheng, Z. G., et al., 2022. Mantle Source of Tephritic Porphyry in the Tarim Large Igneous Province Constrained from Mg, Zn, Sr, and Nd Isotope Systematics: Implications for Deep Carbon Cycling. Geological Society of America Bulletin, 134(1-2): 487-500. https://doi.org/10.1130/B35902.1
|
Le Maitre, R. W., Bateman, P., Dudek, A., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, 193.
|
Le Roux, V., Lee, C. T. A., Turner, S. J., 2010. Zn/Fe Systematics in Mafic and Ultramafic Systems: Implications for Detecting Major Element Heterogeneities in the Earth's Mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796. https://doi.org/10.1016/j.gca.2010.02.004
|
Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623
|
Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4
|
Li, D. X., Yang, S. F., Chen, H. L., et al., 2014. Late Carboniferous Crustal Uplift of the Tarim Plate and Its Constraints on the Evolution of the Early Permian Tarim Large Igneous Province. Lithos, 204: 36-46. https://doi.org/10.1016/j.lithos.2014.05.023
|
Li, W. Y., Teng, F. Z., Halama, R., et al., 2016. Magnesium Isotope Fractionation during Carbonatite Magmatism at Oldoinyo Lengai, Tanzania. Earth and Planetary Science Letters, 444: 26-33. https://doi.org/10.1016/j.epsl.2016.03. 034 doi: 10.1016/j.epsl.2016.03.034
|
Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030
|
Li, X. H., Li, Z. X., Wingate, M. T. D., et al., 2006. Geochemistry of the 755 Ma Mundine Well Dyke Swarm, Northwestern Australia: Part of a Neoproterozoic Mantle Superplume beneath Rodinia? Precambrian Research, 146(1-2): 1-15. https://doi.org/10.1016/j.precamres.2005.12.007
|
Li, X. Y., Zhang, C., 2022. Machine Learning Thermobarometry for Biotite-Bearing Magmas. Journal of Geophysical Research: Solid Earth, 127: e2022JB024137. https://doi.org/10.1029/2022JB024137
|
Li, Z. L., Chen, H. L., Song, B., et al., 2011. Temporal Evolution of the Permian Large Igneous Province in Tarim Basin in Northwestern China. Journal of Asian Earth Sciences, 42(5): 917-927. https://doi.org/10.1016/j.jseaes.2011.05.009
|
Li, Z. L., Yang, S. F., Chen, H. L., et al., 2008. Chronology and Geochemistry of Taxinan Basalts from the Tarim Basin: Evidence for Permian Plume Magmatism. Acta Petrologica Sinica, 24(5): 959-970 (in Chinese with English abstract).
|
Lin, S. C., van Keken, P. E., 2005. Multiple Volcanic Episodes of Flood Basalts Caused by Thermochemical Mantle Plumes. Nature, 436(7048): 250-252. https://doi.org/10.1038/nature03697
|
Liu, B. X., 2018. Geologic Characteristics and Petrogenesis of the Lamprophyres in the Tarim Large Igneous Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Liu, B. X., Zhang, Z. C., Cheng, Z. G., 2021. Classification, Characteristics and Petrogenesis of Lamprophyres: an Overview. Acta Geologica Sinica, 95(2): 292-316 (in Chinese with English abstract).
|
Liu, L. H., Zhang, Z. C., Cheng, Z. G., et al., 2021. Ultramafic Xenoliths from Aillikites in the Tarim Large Igneous Province: Implications for Alaskan-Type Affinity and Role of Subduction. Lithos, 380-381: 105902. https://doi.org/10.1016/j.lithos.2020.105902
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Long, X. P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 180(3-4): 272-284. https://doi.org/10.1016/j.precamres.2010.05.001
|
Luhr, J. F., 1997. Extensional Tectonics and the Diverse Primitive Volcanic Rocks in the Western Mexican Volcanic Belt. The Canadian Mineralogist, 35: 473-500.
|
Ma, L., Xu, Y. G., Li, J., et al., 2022. Molybdenum Isotopic Constraints on the Origin of EM1-Type Continental Intraplate Basalts. Geochimica et Cosmochimica Acta, 317: 255-268. https://doi.org/10.1016/j.gca.2021.11.013
|
McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
|
Meshram, T. M., Shukla, D., Behera K. K., 2015. Alkaline Lamprophyre (Camptonite) from Bayyaram Area, NE Margin of the Eastern Dharwar Craton, Southern India. Current Science, 109: 1931-1934.
|
Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262
|
Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand: Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1-2): 23-45. https://doi.org/10.1016/S0009-2541(97)00105-8
|
Nakamura, Y., Tatsumoto, M., 1988. Pb, Nd, and Sr Isotopic Evidence for a Multicomponent Source for Rocks of Cook-Austral Islands and Heterogeneities of Mantle Plumes. Geochimica et Cosmochimica Acta, 52(12): 2909-2924. https://doi.org/10.1016/0016-7037(88)90157-3
|
Natali, C., Beccaluva, L., Bianchini, G., et al., 2018. Coexistence of Alkaline-Carbonatite Complexes and High-MgO CFB in the Paranà-Etendeka Province: Insights on Plume-Lithosphere Interactions in the Gondwana Realm. Lithos, 296-299: 54-66. https://doi.org/10.1016/j.lithos.2017.11.001
|
Pandey, R., Rao, N. V. C., Dhote, P., et al., 2018. Rift-Associated Ultramafic Lamprophyre (Damtjernite) from the Middle Part of the Lower Cretaceous (125 Ma) Succession of Kutch, Northwestern India: Tectonomagmatic Implications. Geoscience Frontiers, 9(6): 1883-1902. https://doi.org/10.1016/j.gsf.2017.10.013
|
Pandey, A., Rao, N. C., Chakrabarti, R., et al., 2017. Petrogenesis of a Mesoproterozoic Shoshonitic Lamprophyre Dyke from the Wajrakarur Kimberlite Field, Eastern Dharwar Craton, Southern India: Geochemical and Sr-Nd Isotopic Evidence for a Modified Sub-Continental Lithospheric Mantle Source. Lithos, 292-293: 218-233. https://doi.org/10.1016/j.lithos.2017.09.001
|
Pang, C. J., Wang, X. C., Xu, B., et al., 2016. Geochemical and Sr-Nd-Hf Isotopic Analysis of Late Carboniferous N-MORB-Type Basalts in Central Inner Mongolia, China: Evidence for an Intraplate Origin. Lithos, 261: 55‒71. https://doi.org/10.1016/j.lithos.2016.05.005
|
Pearce, J. A., Ernst, R. E., Peate, D. W., et al., 2021. LIP Printing: Use of Immobile Element Proxies to Characterize Large Igneous Provinces in the Geologic Record. Lithos, 392-393: 106068. https://doi.org/10.1016/j.lithos.2021.106068
|
Pertermann, M., Hirschmann, M. M., Hametner, K., et al., 2004. Experimental Determination of Trace Element Partitioning between Garnet and Silica-Rich Liquid during Anhydrous Partial Melting of MORB-like Eclogite. Geochemistry, Geophysics, Geosystems, 5: Q05A01. https://doi.org/10.1029/2003GC000638
|
Pertermann, M., Hirschmann, M. M., 2003. Partial Melting Experiments on a MORB-like Pyroxenite between 2 and 3 GPa: Constraints on the Presence of Pyroxenite in Basalt Source Regions from Solidus Location and Melting Rate. Journal of Geophysical Research: Solid Earth, 108(B2): 2125. https://doi.org/10.1029/2000JB000118
|
Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343-352. https://doi.org/10.1038/s41586-019-1643-z
|
Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268. https://doi.org/10.1016/j.gca.2011.06.026
|
Ridolfi, F., 2021. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals, 11(3): 324. https://doi.org/10.3390/min11030324
|
Rock, N. M. S., 1987. The Nature and Origin of Lamprophyres: An Overview. Geological Society, London, Special Publications, 30(1): 191-226. https://doi.org/10.1144/gsl.sp.1987.030.01.09
|
Rock, N. M. S., 1991. Lamprophyres. Blackie, Glasgow.
|
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L. ed., Treatise on Geochemistry. Elsevier, Amsterdam, 1-64.
|
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 1-51.
|
Serrano, L., Ferrari, L., Martínez, M. L., et al., 2011. An Integrative Geologic, Geochronologic and Geochemical Study of Gorgona Island, Colombia: Implications for the Formation of the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 309(3-4): 324-336. https://doi.org/10.1016/j.epsl.2011.07.011
|
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
|
Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355
|
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434: 590-597. https://doi.org/10.1038/nature03411
|
Song, W. L., Xu, C., Chakhmouradian, A. R., et al., 2017. Carbonatites of Tarim (NW China): First Evidence of Crustal Contribution in Carbonatites from a Large Igneous Province. Lithos, 282-283: 1-9. https://doi.org/10.1016/j.lithos.2017.02.018
|
Spera, F. J., 1980. Aspects of Magma Transport. In: Hargraves, R. B., ed., Physics of Magmatic Processes. Princeton University Press, Princeton, 265-324.
|
Stalder, R., Foley, S. F., Brey, G. P., et al., 1998. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900-1 200 ℃ and 3.0-5.7 GPa: New Experimental Data for Garnet, Clinopyroxene, and Rutile, and Implications for Mantle Metasomatism. Geochimica et Cosmochimica Acta, 62(10): 1781-1801. https://doi.org/10.1016/S0016-7037(98)00101-X
|
Stoppa, F., Rukhlov, A. S., Bell, K., et al., 2014. Lamprophyres of Italy: Early Cretaceous Alkaline Lamprophyres of Southern Tuscany, Italy. Lithos, 188: 97-112. https://doi.org/10.1016/j.lithos.2013.10.010
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Tainton, K. M., McKenzie, D., 1994. The Generation of Kimberlites, Lamproites, and Their Source Rocks. Journal of Petrology, 35(3): 787-817. https://doi.org/10.1093/petrology/35.3.787
|
Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3-4): 279-281. https://doi.org/10.1016/S0009-2541(00)00198-4
|
Tappe, S., Foley, S. F., Jenner, G. A., et al., 2005. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology, 46(9): 1893-1900. https://doi.org/10.1093/petrology/egi039
|
Tappe, S., Foley, S. F., Jenner, G. A., et al., 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. Journal of Petrology, 47(7): 1261-1315. https://doi.org/10.1093/petrology/egl008
|
Tappe, S., Pearson, D. G., Prelevic, D., 2013. Kimberlite, Carbonatite, and Potassic Magmatism as Part of the Geochemical Cycle. Chemical Geology, 353: 1-3. https://doi.org/10.1016/j.chemgeo.2013.04.004
|
Tappe, S., Smart, K. A., Stracke, A., et al., 2016. Melt Evolution beneath a Rifted Craton Edge: 40Ar/39Ar Geochronology and Sr-Nd-Hf-Pb Isotope Systematics of Primitive Alkaline Basalts and Lamprophyres from the SW Baltic Shield. Geochimica et Cosmochimica Acta, 173: 1-36. https://doi.org/10.1016/j.gca.2015.10.006
|
Tatsumi, Y., 1989. Migration of Fluid Phases and Genesis of Basalt Magmas in Subduction Zones. Journal of Geophysical Research: Solid Earth, 94(B4): 4697-4707. https://doi.org/10.1029/jb094ib04p04697
|
Teng, F. Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287. https://doi.org/10.2138/rmg.2017.82.7
|
Teng, F. Z., Li, W. Y., Ke, S., et al., 2010. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74: 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
|
Teng, F. Z., Wadhwa, M., Helz, R. T., 2007. Investigation of Magnesium Isotope Fractionation during Basalt Differentiation: Implications for a Chondritic Composition of the Terrestrial Mantle. Earth and Planetary Science Letters, 261(1-2): 84-92. https://doi.org/10.1016/j.epsl.2007.06.004
|
Tian, W., Campbell, I. H., Allen, C. M., et al., 2010. The Tarim Picrite-Basalt-Rhyolite Suite, a Permian Flood Basalt from Northwest China with Contrasting Rhyolites Produced by Fractional Crystallization and Anatexis. Contributions to Mineralogy and Petrology, 160(3): 407-425. https://doi.org/10.1007/s00410-009-0485-3
|
Todt, W., Cliff, R. A., Hanser, A., et al., 1996. Evaluation of a 202Pb-205Pb Double Spike for High-Precision Lead Isotope Analysis. In: Hart, S. R., Basu, A., eds., Earth Processes: Reading the Isotopic Code. American Geophysical Union, 95: 429-437.
|
Tuff, J., Takahashi, E., Gibson, S. A., 2005. Experimental Constraints on the Role of Garnet Pyroxenite in the Genesis of High-Fe Mantle Plume Derived Melts. Journal of Petrology, 46(10): 2023-2058. https://doi.org/10.1093/petrology/egi046
|
Van Westrenen, W., Blundy, J. D., Wood, B. J., 2000. Effect of Fe2+ on Garnet-Melt Trace Element Partitioning: Experiments in FCMAS and Quantification of Crystal-Chemical Controls in Natural Systems. Lithos, 53(3-4): 189-201. https://doi.org/10.1016/S0024-4937(00)00024-4
|
Vance, D., Thirlwall, M., 2002. An Assessment of Mass Discrimination in MC-ICPMS Using Nd Isotopes. Chemical Geology, 185(3-4): 227-240. https://doi.org/10.1016/S0009-2541(01)00402-8
|
Wang, C. H., Zhang, Z. C., Giuliani, A., et al., 2022. New Insights into the Mantle Source of a Large Igneous Province from Highly Siderophile Element and Sr-Nd-Os Isotope Compositions of Carbonate-Rich Ultramafic Lamprophyres. Geochimica et Cosmochimica Acta, 326: 77-96. https://doi.org/10.1016/j.gca.2022.04.004
|
Wang, L., 2014. The Mineralogy, Geochemistry and Source Region of Agpaitic Lamprophyre in Wajilitage, Xinjiang (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Wang, X., Cao, J., Zhang, G. Z., 2021. Origin of Ore-Forming Magmas Associated with Ni-Cu Sulfide Deposits in Orogenic Belts: Case Study of Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China. Earth Science, 46(11): 3829-3849 (in Chinese with English abstract).
|
Wang, X. C., Li, X. H., Li, W. X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China: Remnants of 820-810 Ma Continental Flood Basalts? Geological Society of America Bulletin, 120(11-12): 1478-1492. https://doi.org/10.1130/B26310.1
|
Wang, X. D., Hou, T., Wang, M., et al., 2021. A New Clinopyroxene Thermobarometer for Mafic to Intermediate Magmatic Systems. European Journal of Mineralogy, 33(5): 621-637. https://doi.org/10.5194/ejm-33-621-2021
|
Wang, X. J., Chen, L. H., Hanyu, T., et al., 2021. Magnesium Isotopic Fractionation during Basalt Differentiation as Recorded by Evolved Magmas. Earth and Planetary Science Letters, 565: 116954. https://doi.org/10.1016/j.epsl.2021.116954
|
Wang, Z. C., 2019. Study of the Petrogenesis of Tarim Permian Flood Basalts, NW China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. https://doi.org/10.1016/0012-821X(91)90217-6
|
Wei, B. W., Zhang, Z. C., Cheng, Z. G., et al., 2021. Phonotephrite and Phonolite in the Tarim Large Igneous Province, Northwestern China: Petrological, Geochemical and Isotopic Evidence for Contrasting Mantle Sources and Deep Carbon Recycling. Journal of Asian Earth Sciences, 217: 104842. https://doi.org/10.1016/j.jseaes.2021.104842
|
Wei, X., Xu, Y. G., Feng, Y. X., et al., 2014. Plume-Lithosphere Interaction in the Generation of the Tarim Large Igneous Province, NW China: Geochronological and Geochemical Constraints. American Journal of Science, 314(1): 314-356. https://doi.org/10.2475/01.2014.09
|
Wei, X., Xu, Y. G., He, B., et al., 2019. Zircon U-Pb Age and Hf-O Isotope Insights into Genesis of Permian Tarim Felsic Rocks, NW China: Implications for Crustal Melting in Response to a Mantle Plume. Gondwana Research, 76: 290-302. https://doi.org/10.1016/j.gr.2019.06.015
|
Wilson, M., 1989. Igneous Petrogenesis. Springer, London.
|
Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
|
Xie, W., Xu, Y. G., Chen, Y. B., et al., 2016. High-Alumina Basalts from the Bogda Mountains Suggest an Arc Setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 256-257: 165-181. https://doi.org/10.1016/j.lithos.2016.04.005
|
Xu, Y. G., Wei, X., Luo, Z. Y., et al., 2014. The Early Permian Tarim Large Igneous Province: Main Characteristics and a Plume Incubation Model. Lithos, 204: 20-35. https://doi.org/10.1016/j.lithos.2014.02.015
|
Xue, S. C., Qin, K. Z., Tang, D. M., et al., 2015. Compositional Characteristics of Pyroxenes from Permian Mafic-Ultramafic Complexes in Eastern Xinjiang, and Their Implications for Petrogenesis and Ni-Cu Mineralization. Acta Petrologica Sinica, 31(8): 2175-2192 (in Chinese with English abstract).
|
Yang, S. F., Chen, H. L., Li, Z. L., et al., 2014. Early Permian Tarim Large Igneous Province in Northwest China. Scientia Sinica Terrae, 44(2): 187-199 (in Chinese).
|
Yang, W., Teng, F. Z., Li, W. Y., et al., 2016. Magnesium Isotopic Composition of the Deep Continental Crust. American Mineralogist, 101(2): 243-252. https://doi.org/10.2138/am-2016-5275
|
Yang, Z. F., Li, J., Liang, W. F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth Science Reviews, 157: 18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
|
Yang, Z. F., Zhou, J. H., 2013. Can We Identify Source Lithology of Basalt? Scientific Reports, 3: 1856. https://doi.org/10.1038/srep01856
|
Yaxley, G. M., Ghosh, S., Kiseeva, E. S., et al., 2019. CO2-Rich Melts in Earth. In: Orcutt, B. N., Daniel, I., Dasgupta, R., eds., Deep Carbon: Past to Present. Cambridge University Press, Cambridge, 129-162.
|
Yu, X., 2020. The Petrogenetic Interrelationship of Wajilitag Complex Components in the Early Permian Tarim Large Igneous Province, NW China. International Geology Review, 62(10): 1343-1357. https://doi.org/10.1080/00206814.2019.1647466
|
Zhang, C. L., Li, H. K., Santosh, M., et al., 2012. Precambrian Evolution and Cratonization of the Tarim Block, NW China: Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 47: 5-20. https://doi.org/10.1016/j.jseaes.2011.05.018
|
Zhang, D. Y., Zhang, Z. C., Mao, J. W., et al., 2016. Zircon U-Pb Ages and Hf-O Isotopic Signatures of the Wajilitag and Puchang Fe-Ti Oxide-bearing Intrusive Complexes: Constraints on Their Source Characteristics and Temporal-Spatial Evolution of the Tarim Large Igneous Province. Gondwana Research, 37: 71-85. https://doi.org/10.1016/j.gr.2016.05.011
|
Zhang, D. Y., Zhang, Z. C., Santosh, M., et al., 2013. Perovskite and Baddeleyite from Kimberlitic Intrusions in the Tarim Large Igneous Province Signal the Onset of an End-Carboniferous Mantle Plume. Earth and Planetary Science Letters, 361: 238-248. https://doi.org/10.1016/j.epsl.2012.10.034
|
Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877
|
Zhu, W. B., Zheng, B. H., Shu, L. S., et al., 2011. Geochemistry and SHRIMP U-Pb Zircon Geochronology of the Korla Mafic Dykes: Constrains on the Neoproterozoic Continental Breakup in the Tarim Block, Northwest China. Journal of Asian Earth Sciences, 42(5): 791-804. https://doi.org/10.1016/j.jseaes.2010.11.018
|
Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
|
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
|
Zou, Z. Q., Wang, Z. C., Foley, S., et al., 2022. Origin of Low-MgO Primitive Intraplate Alkaline Basalts from Partial Melting of Carbonate-bearing Eclogite Sources. Geochimica et Cosmochimica Acta, 324: 240-261. https://doi.org/10.1016/j.gca.2022.02.022
|
陈洁, 龚迎莉, 陈露, 等, 2021. 镁同位素地球化学研究新进展及其在碳酸岩研究中的应用. 地球科学, 46(12): 4366-4389. doi: 10.3799/dqkx.2021.140
|
程志国, 2016. 塔里木大火成岩省金伯利质岩石‒霞石岩‒碳酸岩研究(博士学位论文). 北京: 中国地质大学.
|
邓黎旭, 刘勇胜, 宗克清, 等, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
|
厉子龙, 杨树锋, 陈汉林, 等, 2008. 塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约. 岩石学报, 24(5): 959-970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805004.htm
|
刘秉翔, 2018. 塔里木大火成岩省煌斑岩特征及其岩石成因(硕士学位论文). 北京: 中国地质大学.
|
刘秉翔, 张招崇, 程志国, 2021. 煌斑岩的分类、特征及成因. 地质学报, 95(2): 292-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102002.htm
|
王璐, 2014. 新疆瓦吉里塔格地区钠质煌斑岩的矿物学、地球化学特征及源区(硕士学位论文). 北京: 中国地质大学.
|
王旋, 曹俊, 张盖之, 2021. 造山带铜镍硫化物矿床的岩浆起源: 以东天山黄山南铜镍矿床为例. 地球科学, 46(11): 3829-3849. doi: 10.3799/dqkx.2021.015
|
王振朝, 2019. 塔里木二叠纪溢流玄武岩岩石成因研究(硕士学位论文). 北京: 中国地质大学.
|
吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
|
薛胜超, 秦克章, 唐冬梅, 等, 2015. 东疆二叠纪镁铁‒超镁铁岩体中辉石的成分特征及其对成岩和Ni-Cu成矿的指示. 岩石学报, 31(8): 2175-2192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508005.htm
|
杨树锋, 陈汉林, 厉子龙, 等, 2014. 塔里木早二叠世大火成岩省. 中国科学: 地球科学, 44(2): 187-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201710004.htm
|
![]() |
![]() |