Citation: | Liu Guofeng, Du Chenghao, Feng Guangliang, Yan Changgen, Li Shengfeng, Xu Dingping, 2023. Causative Characteristics and Prediction Model of Rockburst Based on Large and Incomplete Data Set. Earth Science, 48(5): 1755-1768. doi: 10.3799/dqkx.2022.491 |
Bao, H., Liu, C., Liang, N., et al., 2022. Analysis of Large Deformation of Deep-Buried Brittle Rock Tunnel in Strong Tectonic Active Area Based on Macro and Microcrack Evolution. Engineering Failure Analysis, 138: 106351. doi: 10.1016/j.engfailanal.2022.106351
|
Bao, H., Zhang, K. K., Yan, C. G., et al., 2020. Excavation Damaged Zone Division and Time-Dependency Deformation Prediction: A Case Study of Excavated Rock Mass at Xiaowan Hydropower Station. Engineering Geology, 272: 105668. doi: 10.1016/j.enggeo.2020.105668
|
Feng, X. T., Xiao, Y. X., Feng, G. L., et al., 2019. Study on the Development Process of Rockbursts. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201904002.htm
|
Feng, X. T., Zhao, H., 2002. Prediction of Rockburst Using Support Vector Machine. Journal of Northeastern University (Natural Science), 23(1): 57-59 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-3026.2002.01.016
|
Gong, F. Q., Li, X. B., 2007. A Distance Discriminant Analysis Method for Prediction of Possibility and Classification of Rockburst and Its Application. Chinese Journal of Rock Mechanics and Engineering, 26(5): 1012-1018 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.05.021
|
Gong, F. Q., Li, X. B., Zhang, W., 2010. Rockburst Prediction of Underground Engineering Based on Bayes Discriminant Analysis Method. Rock and Soil Mechanics, 31(S1): 370-377, 387 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX2010S1060.htm
|
He, M. C., 2021. Research Progress of Deep Shaft Construction Mechanics. Journal of China Coal Society, 46(3): 726-746 (in Chinese with English abstract).
|
Hu, J. H., Shang, J. L., Zhou, K. P., 2013. Improved Matter-Element Extension Model and Its Application to Prediction of Rockburst Intensity. The Chinese Journal of Nonferrous Metals, 23(2): 495-502 (in Chinese with English abstract). http://www.cqvip.com/QK/97361X/201302/45247691.html
|
Li, H., 2020. Research on Tunnel Rockburst Prediction Method Based on Combination Weight Ideal Point Method-Database(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Li, N., Jimenez, R., Feng, X. D., 2017. The Influence of Bayesian Networks Structure on Rock Burst Hazard Prediction with Incomplete Data. Procedia Engineering, 191: 206-214. https://doi.org/10.1016/j.proeng.2017.05.173
|
Li, Z. Q., Xue, Y. G., Li, S. C., et al., 2020. Rock Burst Risk Assessment in Deep-Buried Underground Caverns: A Novel Analysis Method. Arabian Journal of Geosciences, 13(11): 388. https://doi.org/10.1007/s12517-020-05328-4
|
Liu, G. F., Feng, X. T., Feng, G. L., et al., 2016. A Method for Dynamic Risk Assessment and Management of Rockbursts in Drill and Blast Tunnels. Rock Mechanics and Rock Engineering, 49(8): 3257-3279. https://doi.org/10.1007/s00603-016-0949-5
|
Maxutov, K., Adoko, A. C., 2021. Establishing a Bayesian Network Model for Predicting Rockburst Damage Potential. IOP Conference Series: Earth and Environmental Science, 861(6): 062094. https://doi.org/10.1088/1755-1315/861/6/062094
|
Pearl, J., 1986. A Constraint-Propagation Approach to Probabilistic Reasoning. Machine Intelligence and Pattern Recognition, 4(C): 357-369.
|
Pu, Y., Apel, D. B., Xu, H., 2019. Rockburst Prediction in Kimberlite with Unsupervised Learning Method and Support Vector Classifier. Tunnelling and Underground Space Technology, 90: 12-18. https://doi.org/10.1016/j.tust.2019.04.019
|
Qiu, S. L., Feng, X. T., Jiang, Q., et al., 2014. A Novel Numerical Index for Estimating Strainburst Vulnerability in Deep Tunnels. Chinese Journal of Rock Mechanics and Engineering, 33(10): 2007-2017 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yslxygcxb201410007
|
Sousa, L., Miranda, T., Sousa, R., et al., 2017. The Use of Data Mining Techniques in Rockburst Risk Assessment. Engineering, 3(4): 552-558. https://doi.org/10.1016/J.ENG.2017.04.002
|
Tian, R., Meng, H. D., Chen, S. J., et al., 2020. Comparative Study on Three Rockburst Prediction Models of Intensity Classification Based on Machine Learning. Gold Science and Technology, 28(6): 920-929 (in Chinese with English abstract).
|
Wang, C. L., Wu, A. X., Lu, H., et al., 2015. Predicting Rockburst Tendency Based on Fuzzy Matter-Element Model. International Journal of Rock Mechanics and Mining Sciences, 75: 224-232. https://doi.org/10.1016/j.ijrmms.2015.02.004
|
Wu, F. Y., He, C., Wang, B., et al., 2020. Application Research of FA-PP Rockburst Prediction Modelf or Tunnel Walls. China Journal of Highway and Transport, 33(11): 215-225 (in Chinese with English abstract).
|
Wu, S., Wu, Z., Zhang, C., 2019. Rock Burst Prediction Probability Model Based on Case Analysis. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 93(C): 103069. https://doi.org/10.1016/j.tust.2019.103069
|
Xie, X. B., Li, D. X., Kong, L. Y., et al., 2020. Rockburst Propensity Prediction Model Based on CRITIC-XGB Algorithm. Chinese Journal of Rock Mechanics and Engineering, 39(10): 1975-1982 (in Chinese with English abstract).
|
Xu, L. S., Wang, L. S., Li, Y. L., 2002. Study on Mechanism and Judgement of Rockbursts. Rock and Soil Mechanics, 23(3): 300-303 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2002.03.010
|
Xu, M. G., Du, Z. J., Yao, G. H., et al., 2008. Rockburst Prediction of Chengchao Iron Mine during Deep Mining. Chinese Journal of Rock Mechanics and Engineering, 27(S1): 2921-2928 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2008S1052.htm
|
Xue, Y. G., Bai, C. H., Qiu, D. H., et al., 2020. Predicting Rockburst with Database Using Particle Swarm Optimization and Extreme Learning Machine. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 98(C): 103287. https://doi.org/10.1016/j.tust.2020.103287
|
Yan, J., He, C., Hong, B., et al., 2019. Inoculation and Characters of Rockbursts in Extra-Long and Deep-Lying Tunnels Located on Yarlung Zangbo Suture. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769-781 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201904011.htm
|
Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093 (in Chinese with English abstract).
|
Yang, L., Wei, J., 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023 (in Chinese with English abstract).
|
Yang, T., Li, G. W., 2000. Study on Rockburst Prediction Method Based on the Prior Knowledge. Chinese Journal of Rock Mechanics and Engineering, 19(4): 429-431 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.007
|
Yang, X. B., Pei, Y. Y., Cheng, H. M., et al., 2021. Prediction Method of Rockburst Intensity Grade Based on SOFM Neural Network Model. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2708-2715 (in Chinese with English abstract).
|
Zhao, H. B., Chen, B. R., Zhu, C. X., 2021. Decision Tree Model for Rockburst Prediction Based on Microseismic Monitoring. Advances in Civil Engineering, (3): 1-14. https://doi.org/10.1155/2021/8818052
|
Zhao, P. D., Chen, Y. Q., 2021. Digital Geosciences and Quantitative Mineral Exploration. Journal of Earth Science, 32(2): 269. doi: 10.1007/s12583-021-1440-0
|
Zhang, C. Q., Zhou, H., Feng, X. T., 2011. An Index for Estimating the Stability of Brittle Surrounding Rock Mass: FAI and Its Engineering Application. Rock Mechanics & Rock Engineering, 44(4): 401-414. https://doi.org/10.1007/s00603-011-0150-9
|
Zhang, D. Y., Wang, Y. Z., Fang, H. L., et al., 2015. Numerical Analysis of the Surrounding Rock Stability of the Underground Cavern Group at Jiangbian Hydropower Station. Chinese Journal of Underground Space and Engineering, 11(3): 673-679 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE201503024.htm
|
Zhang, G. H., Chen, W., Jiao, Y. Y., et al., 2020. A Failure Probability Evaluation Method for Collapse of Drill-and-Blast Tunnels Based on Multistate Fuzzy Bayesian Network. Engineering Geology, 276(9): 105752. https://doi.org/10.1016/j.enggeo.2020.105752
|
Zhang, L. W., Zhang, D. Y., Li, S. C., et al., 2012. Application of RBF Neural Network to Rockburst Prediction Based on Rough Set Theory. Rock and Soil Mechanics, 33(S1): 270-276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX2012S1044.htm
|
Zhang, X. Y., 2021. Study on Rockburst Mechanism in Rock Mass with Structural Planes and Comprehensive Prediction Method (Dissertation). Shandong University, Jinan (in Chinese with English abstract).
|
Zhou, H., Chen, S. K., Zhang, G. Z., et al., 2020. Efficiency Coefficient Method and Ground Stress Field Inversion for Rockburst Predicition in Deep and Long Tunnel. Journal of Engineering Geology, 28(6): 1386-1396 (in Chinese with English abstract).
|
Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rockburst Risk Assessment of Deep Lying Tunnels Based on the Combination Weight and Unascertained Measure Theory: A Case Study of Sangzhuling Tunnel on the Sichuan-Tibet Railway. Earth Science, 47(6): 2130-2148 (in Chinese with English abstract).
|
Zhou, J., Li, X. B., Shi, X. Z., 2012. Long-Term Prediction Model of Rockburst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Safety Science, 50(4): 629-644. https://doi.org/10.1016/j.ssci.2011.08.065
|
冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究. 岩石力学与工程学报, 38(4): 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904002.htm
|
冯夏庭, 赵洪波, 2002. 岩爆预测的支持向量机. 东北大学学报(自然科学版), 23(1): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202302002.htm
|
宫凤强, 李夕兵, 2007. 岩爆发生和烈度分级预测的距离判别方法及应用. 岩石力学与工程学报, 26(5): 1012-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200705021.htm
|
宫凤强, 李夕兵, 张伟, 2010. 基于Bayes判别分析方法的地下工程岩爆发生及烈度分级预测. 岩土力学, 31(S1): 370-377, 387. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1060.htm
|
何满潮, 2021. 深部建井力学研究进展. 煤炭学报, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm
|
胡建华, 尚俊龙, 周科平, 2013. 岩爆烈度预测的改进物元可拓模型与实例分析. 中国有色金属学报, 23(2): 495-502. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201302029.htm
|
李航, 2020. 基于组合权重理想点法‒数据库的隧洞岩爆预测方法研究(硕士学位论文). 北京: 中国地质大学.
|
邱士利, 冯夏庭, 江权, 等, 2014. 深埋隧洞应变型岩爆倾向性评估的新数值指标研究. 岩石力学与工程学报, 33(10): 2007-2017. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410007.htm
|
田睿, 孟海东, 陈世江, 等, 2020. 基于机器学习的3种岩爆烈度分级预测模型对比研究. 黄金科学技术, 28(6): 920-929. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202006023.htm
|
吴枋胤, 何川, 汪波, 等, 2020. 基于洞壁实测信息的FA-PP岩爆预测模型应用研究. 中国公路学报, 33(11): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202011020.htm
|
谢学斌, 李德玄, 孔令燕, 等, 2020. 基于CRITIC-XGB算法的岩爆倾向等级预测模型. 岩石力学与工程学报, 39(10): 1975-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010003.htm
|
徐林生, 王兰生, 李永林, 2002. 岩爆形成机制与判据研究. 岩土力学, 23(3): 300-303. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203009.htm
|
许梦国, 杜子建, 姚高辉, 等, 2008. 程潮铁矿深部开采岩爆预测. 岩石力学与工程学报, 27(S1): 2921-2928. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1052.htm
|
严健, 何川, 汪波, 等, 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征. 岩石力学与工程学报, 38(4): 769-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904011.htm
|
严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
|
杨玲, 魏静, 2023. 基于支持向量机和增强学习算法的岩爆烈度等级预测. 地球科学, 48(5): 2011-2023. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305024.htm
|
杨涛, 李国维, 2000. 基于先验知识的岩爆预测研究. 岩石力学与工程学报, 19(4): 429-431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004011.htm
|
杨小彬, 裴艳宇, 程虹铭, 等, 2021. 基于SOFM神经网络模型的岩爆烈度等级预测方法. 岩石力学与工程学报, 40(S01): 2708-2715. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1013.htm
|
张德永, 王玉洲, 方浩亮, 等, 2015. 江边水电站地下洞室群围岩稳定性数值分析. 地下空间与工程学报, 11(3): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503024.htm
|
张乐文, 张德永, 李术才, 等, 2012. 基于粗糙集理论的遗传-RBF神经网络在岩爆预测中的应用. 岩土力学, 33(S1): 270-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1044.htm
|
张翔宇, 2021. 含结构面岩体岩爆发生机理及综合预测方法研究(硕士学位论文). 济南: 山东大学.
|
周航, 陈仕阔, 张广泽, 等, 2020. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究. 工程地质学报, 28(6): 1386-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006025.htm
|
周航, 廖昕, 陈仕阔, 等, 2022. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价——以川藏交通廊道铁路桑珠岭隧道为例. 地球科学, 47(6): 2130-2148. doi: 10.3799/dqkx.2021.170
|