• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 2
    Feb.  2024
    Turn off MathJax
    Article Contents
    Wu Yang, Shen Chunbo, Qiu Huaning, 2024. 40Ar/39Ar Ages of Gneiss and Granite from Huangling Uplift and Their Tectonic Significance. Earth Science, 49(2): 700-711. doi: 10.3799/dqkx.2022.501
    Citation: Wu Yang, Shen Chunbo, Qiu Huaning, 2024. 40Ar/39Ar Ages of Gneiss and Granite from Huangling Uplift and Their Tectonic Significance. Earth Science, 49(2): 700-711. doi: 10.3799/dqkx.2022.501

    40Ar/39Ar Ages of Gneiss and Granite from Huangling Uplift and Their Tectonic Significance

    doi: 10.3799/dqkx.2022.501
    • Received Date: 2022-12-29
    • Publish Date: 2024-02-25
    • The Huangling uplift, located in the front of the northeast corner of the Sichuan Basin, is composed mainly of Huangling granite. The granite is the geological record of the Jinning orogeny and the Rodinia supercontinent cracking in the Yangtze block, and it is critical for understanding the tectonic evolution and magmatic activity of the Yangtze block. To determine the formation time of the Huangling granite, abundant chronological data were published using isotope chronology methods such as U-Pb, K-Ar, and Rb-Sr. However, as a new chronology technique, 40Ar/39Ar is rarely used in studying Huangling granite. In this study, the age of amphibole in metamorphic rocks and muscovite and biotite in Huanglingmiao granite has been determined by 40Ar/39Ar stage heating technique. The plateau age of amphibole was (835.1±0.8) Ma, and the plateau age of muscovite was (830.0±1.7) Ma. The biotite sample yielded an age spectrum with an upward convex shape, and no obvious flat section was formed. It was concluded that the age of amphibole is much lower than the formation age and metamorphic age of metamorphic rocks, but slightly higher than the muscovite age of nearby granite, indicating the time when the surrounding rock was reset by granite baking and then cooled to 500 ℃. The muscovite age indicates the time Huangling granite cooled to 350 ℃. Both of them restrict the formation time of Huangling granite. Although no plateau age was obtained, the biotite sample gave a meaningful age of 216 Ma in the low-temperature steps, which probably indicates the occurrence time of thermal disturbance in the later stage. The collision and merging of the North China and Yangtze plates caused the slow uplift of the Huangling, and activity of the NNW-trending faults in the Huangling area, and caused the thermal effect enough to affect the Ar closure of the biotite. The high precision 40Ar/39Ar age provides accurate chronological support for determining the tectonic evolution history of Huangling granite.

       

    • loading
    • Feng, D. Y., Li, Z. C., Zhang, Z. C., 1991. Intrusive Ages and Isotopic Characteristics of Massives in the South of Huangling Granitoids. Hubei Geological, 5(2): 1-12 (in Chinese with English abstract).
      Gao, S., Qiu, Y. M., Ling, W. L., et al., 2001. Studies on the Chronology of Single Grain Zircon SHRIMP U-Pb from the Kongling High Metamorphic Geologic Body- Discovery of the Continental Crust Material of the Yangtze Craton > 3.2 Ga. Science in China (Series D), 31(1): 27-35 (in Chinese).
      Gao, W., Zhang, C. H., 2009. Zircon SHRIMP U-Pb Ages of the Huangling Granite and the Tuff Beds from Liantuo Formation in the Three Gorges Area of Yangtze River, China and Its geological significance. Geological Bulletin of China, 28(1): 45-50 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.01.006
      Ge, X., Shen, C. B., Mei, L. F., 2016. Low-Temperature Thermochronological Constraints on the Mesozoic-Cenozoic Paleotopograph in the Huangling Massif. Geotectonica et Metallogenia, 40(4): 654-662 (in Chinese with English abstract).
      Harrison, T. M., McDougall, I., 1982. The Thermal Significance of Potassium Feldspar K-Ar Ages Inferred from 40Ar/39Ar Age Spectrum Results. Geochimica et Cosmochimica Acta, 46: 1811-1820. https://doi.org/ 10.1016/0016-7037(82)90120-x
      Hu, S. L., Liu, H. Y., Wang, S. S., et al., 1989. On the Age of Sinian Lower Boundary Infered from the New 40Ar/39Ar Data. Chinese Journal of Geology, 24(1): 16-25 (in Chinese with English abstract).
      Hui, B., Dong, Y. P., Sun, S. S., et al., 2022. Neoproterozoic Tectonic Evolution of the Northern Margin of the Yangtze Plate: Constrains from Magmatic Events. Acta Geologica Sinica, 96(9): 3034-3050 (in Chinese with English abstract).
      Jiang, X. F., Peng, S. B., Han, Q. S., 2021. Petrogenesis and Geological Significance of ca. 860 Ma Dikes in Southern Huangling Anticline, Yangtze Craton. Earth Science, 46(6): 2117-2132 (in Chinese with English abstract).
      Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1): 93-102. https://doi.org/ 10.1007/s12583-018-0821-5
      Lanphere, M., Dalrymple, G., 1976. Identification of Excess40Ar by the 40Ar/39Ar Age Spectrum Technique. Earth and Planetary Science Letters, 32: 141-148. https://doi.org/ 10.1016/0012-821x(76)90052-2
      Li, Y. H., Zheng, J. P., Xiong, Q., et al., 2016. Petrogenesis and Tectonic Implications of Paleoproterozoic MetapeliticRocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China. Precambrian Research, 276: 158-177. https://doi.org/ 10.1016/j.precamres.2016.01.028.
      Li, Y. L., Zhou, H. W., Li, X. H., et al., 2007. 40Ar-39Ar Plateau Ages of Biotite and Amphibole from Tonalite of Huangling Granitoids and Their Cooling Curve. Acta Petrologica Sinica, 23(5): 1067-1074 (in Chinese with English abstract).
      Li, Z. C., Wang, G. H., Zhang, Z. C., 2002. Isotopic Age Spectrum of the Huangling Granitic Batholith, Western Hubei. Geology and Mineral Resources of South China, 3: 19-28 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2002.03.004
      Ling, W. L., Gao, S., Cheng, J. P., et al., 2006. Neoproterozoic Magmatic Events Within the Yangtze Continental Interior and Along Its Northern Margin and Their Tectonic Implication: Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Huangling and Hannan Complexes. Acta Petrologica Sinica, 22(2): 387-396 (in Chinese with English abstract).
      Ling, W. L., Gao, S., Zheng, H. F., et al., 1998. The Sm-Nd Isotope Geochronology of the Kongling Complex in Huangling Region of the Yangtze Craton. Chinese Science Bulletin, 43(1): 3-5 (in Chinese).
      Liu, X. M., Gao, S., Ling, W. L., et al., 2005. 3.5 Ga Detrital Zircon from the Yangtze Craton and Its Geological Significance. Progress in Natural Science, 15(11): 1334-1337 (in Chinese).
      Lovera, O., Richter, F., Harrison, T., 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes. Journal of Geophysical Research, 941: 17917-17935. https://doi.org/ 10.1029/JB094iB12p17917.
      Ma, D. Q., Du, S. H., Xiao, Z. F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2): 151-161 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2002.02.009
      Ma, D. Q., Li, Z. C., Xiao, Z. F., 1997. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientia Sinica, 18(3): 10-18 (in Chinese with English abstract).
      Ma, G. G., Li, H. Q., Zhang, Z. C., 1984. An Investigation of the Age Limits of the Sinian System in South China. Bulletin of Yichang Institute of Geology and Mineral ResourcesChinese Academy of Geological Sciences, 8: 1-29 (in Chinese with English abstract).
      Peng, M., 2010. Paleoproterozoic Magmatism of Yangtze Craton: Timing and Geological Implications (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(5): 641-647 (in Chinese with English abstract). doi: 10.1360/csb2009-54-5-641
      Schneider, D. A., Cope, N., Holm, D. K., 2013. Thermochronology of the Mont Laurier Terrane, Southern Canadian Grenville Province, and Its Bearing on Defining Orogenic Architecture. Precambrian Research, 226: 43-58. https://doi.org/ 10.1016/j.precamres.2012.11.006.
      Shen, C. B., Hu, D., Min, K., et al., 2020. Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 31(5): 905-918. https://doi.org/10.1007/s12583-020-1346-2.
      Shen, C. B., Mei, L. F., Min, K., et al., 2012. Multi-Chronometric Dating of the Huarong Granitoids from the Middle Yangtze Craton: Implications for the Tectonic Evolution of Eastern China. Journal of Asian Earth Sciences, 52: 73-87. https://doi.org/ 10.1016/j.jseaes.2012.02.013.
      Shi, W. B., Wang, F., Yang, L. K., et al., 2020. 40Ar/39Ar Dating of Basic-Felsic Dikes in the Sulu Orogen, Shandong Peninsula, China: Evidence for the Destruction of the Southeastern North China Craton. Geological Journal, 55(7): 5574-5593. https://doi.org/ 10.1002/gj.3745.
      Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789(in Chinese with English abstract).
      Wei, J. Q., Wang, J. X., Wang, X. D., et al., 2009. Dating of Mafic Dikes from Kongling Group in Huangling Area and Its Implications. Journal of Northwest University (Natural Science Edition), 39(3): 466-471 (in Chinese with English abstract).
      Wei, J. Q., Wei, Y. X., Wang, J. X., et al., 2020. Geochronological Constraints on the Formation and Evolution of the Huangling Basement in the Yangtze Craton, South China. Precambrian Research, 342. https://doi.org/ 10.1016/j.precamres.2020.105707.
      Xiong, C. Y., Wei, C. S., Jin, G. F., et al., 1998. Basic Characteristics and Metallogenetic Regularity of the Gold Ore Deposits in the Middle Core of Huangling Anticline, Western Hubei Province. Geology and Mineral Resources of South China, 1: 3-5 (in Chinese with English abstract).
      Xu, D. L., Peng, L. H., Liu, H., et al., 2013. Meso-Cenozoic Tectono-Sedimentary Response of Multiphased Uplifts of Huangling Anticline, Central China. Geology and Mineral Resources of South China, 29(2): 90-99 (in Chinese with English abstract).
      Yuan, H. H., Zhang, Z. L., Liu, W., et al., 1991. Direct Dating Method of Zircon Grains by 207Pb/206Pb. Mineralogy and Petrology, 11(2): 72-79 (in Chinese with English abstract).
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China: Earth Sciences, 56: 1804-1828, https://doi.org/ 10.1007/s11430-013-4679-1
      Zhang, S. B., Wu, P., Zheng, Y. F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Earth Science, 44(12): 4157-4166 (in Chinese with English abstract).
      Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006a. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Research, 146(1): 16-34. https://doi.org/10.1016/j.precamres.2006.01.002.
      Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006b. Zircon U–Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1): 56-71. https://doi.org/ 10.1016/j.epsl.2006.09.027.
      Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006c. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3): 265-288. https://doi.org/ 10.1016/j.precamres.2006.08.009.
      Zhao, F. Q., Zhao, W. P., Zuo, Y. C., et al., 2006. Zircon U-Pb Ages of the Migmatites from Kongling Complex. Geological Survey and Research, 29(2): 81-85 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2006.02.001
      Zhao, M., Wei, J. Q., Wang, J. X., 2012. Zircon U-Pb Age and Hf Isotope Composition from Yemadong Mafic Dikes in the Huangling Area. Geology and Mineral Researchs of South China, 28(2): 124-131 (in Chinese with English abstract).
      Zhou, Z. Y., Yang, J. X., Zhou, H. W., et al., 2007. Significance on Hubei Huangling Complex in the Rodinia Super-Continent of Evolution. Resources Environment and Engineering, 21(4): 380-384 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK200704004.htm
      冯定犹, 李志昌, 张自超, 1991. 黄陵花岗岩类岩基南部岩体侵入时代和同位素特征. 湖北地质, 5(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199102000.htm
      高山, Qiu Y., 凌文黎, 等, 2001. 崆岭高级变质地体单颗粒锆石SHRIMP U-Pb年代学研究──扬子克拉通 > 3.2 Ga陆壳物质的发现. 中国科学(D辑: 地球科学), 31(1): 27-35.
      高维, 张传恒, 2009. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义. 地质通报, 28(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901007.htm
      葛翔, 沈传波, 梅廉夫, 2016. 低温热年代对黄陵隆起中新生代古地形的约束. 大地构造与成矿学, 40(4): 654-662. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604003.htm
      胡世玲, 刘鸿允, 王松山, 等, 1989. 据40Ar/39Ar快中子年龄新资料讨论震旦系底界年龄. 地质科学, 24(1): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198901002.htm
      惠博, 董云鹏, 孙圣思, 等, 2022. 扬子板块北缘新元古代构造属性的岩浆事件制约. 地质学报, 96(9): 3034-3050. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202209005.htm
      蒋幸福, 彭松柏, 韩庆森, 2021. 扬子克拉通黄陵背斜南部~860 Ma岩墙的成因及地质意义. 地球科学, 46(6): 2117-2132. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106012.htm
      李益龙, 周汉文, 李献华, 等, 2007. 黄陵花岗岩基英云闪长岩的黑云母和角闪石40Ar-39Ar年龄及其冷却曲线. 岩石学报, 23(5): 1067-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705020.htm
      李志昌, 王桂华, 张自超, 2002. 鄂西黄陵花岗岩基同位素年龄谱. 华南地质与矿产, 3: 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200203003.htm
      凌文黎, 高山, 程建萍, 等, 2006. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束. 岩石学报, 22(2): 387-396. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602011.htm
      凌文黎, 高山, 郑海飞, 等, 1998. 扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究. 科学通报, 43(1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199801021.htm
      柳小明, 高山, 凌文黎, 等, 2005. 扬子克拉通35亿年碎屑锆石的发现及其地质意义. 自然科学进展, 15(11): 1334-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200511011.htm
      马大铨, 杜绍华, 肖志发, 2002. 黄陵花岗岩基的成因. 岩石矿物学杂志, 21(2): 151-161. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200202008.htm
      马大铨, 李志昌, 肖志发, 1997. 鄂西崆岭杂岩的组成、时代及地质演化. 地球学报, 18(3): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB703.001.htm
      马国干, 李华芹, 张自超, 1984. 华南地区震旦纪时限范围的研究. 中国地质科学院宜昌地质矿产研究所所刊, 8: 1-29. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198412001003.htm
      彭敏, 2010. 扬子板块古元古代岩浆事件年龄及其地质意义(硕士学位论文). 武汉: 中国地质大学.
      彭敏, 吴元保, 汪晶, 等, 2009. 扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义. 科学通报, 54(5): 641-647. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200905018.htm
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202103002.htm
      魏君奇, 王建雄, 王晓地, 等, 2009. 黄陵地区崆岭群中基性岩脉的定年及意义. 西北大学学报(自然科学版), 39(3): 466-471. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200903016.htm
      熊成云, 韦昌山, 金光富, 等, 1998. 鄂西黄陵背斜核部中段金矿基本特征及成矿规律. 华南地质与矿产, 1: 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199801004.htm
      徐大良, 彭练红, 刘浩, 等, 2013. 黄陵背斜中新生代多期次隆升的构造-沉积响应. 华南地质与矿产, 29(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm
      袁海华, 张志兰, 刘炜, 等, 1991. 直接测定颗粒锆石207Pb/206Pb年龄的方法. 矿物岩石, 11(2): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199102012.htm
      张少兵, 吴鹏, 郑永飞, 2019. 罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录. 地球科学, 44(12): 4157-4166. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912026.htm
      赵风清, 赵文平, 左义成, 等, 2006. 崆岭杂岩中混合岩的锆石U-Pb年龄. 地质调查与研究, 29(2): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200602000.htm
      赵敏, 魏君奇, 王建雄, 2012. 黄陵野马洞基性岩脉中锆石的U-Pb年龄和Hf同位素组成. 华南地质与矿产, 28(2): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201202006.htm
      周忠友, 杨金香, 周汉文, 等, 2007. 湖北黄陵杂岩在Rodinia超大陆演化中的意义. 资源环境与工程, 21(4): 380-384. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200704004.htm
    • dqkxzx-49-2-700-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (279) PDF downloads(53) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return