• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Cao Zijun, Hu Chao, Miao Cong, Wang Xuanhao, Zheng Shuo, 2023. Efficient Identification Method of Coastal Soft Soil Stratum Based on Hierarchical Bayesian Learning. Earth Science, 48(5): 1730-1741. doi: 10.3799/dqkx.2022.503
    Citation: Cao Zijun, Hu Chao, Miao Cong, Wang Xuanhao, Zheng Shuo, 2023. Efficient Identification Method of Coastal Soft Soil Stratum Based on Hierarchical Bayesian Learning. Earth Science, 48(5): 1730-1741. doi: 10.3799/dqkx.2022.503

    Efficient Identification Method of Coastal Soft Soil Stratum Based on Hierarchical Bayesian Learning

    doi: 10.3799/dqkx.2022.503
    • Received Date: 2022-10-30
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Underground stratification based on the cone penetration test (CPT) data relies on empirical charts and subjective judgments. Uncertainties in soil profile identified from CPT data are unavoidable. In this paper it proposes a fast underground stratigraphy identification method based on soil classification index Ic, which also quantifies the identification uncertainty. Under the hierarchical Bayesian learning framework, the proposed method uses full Gaussian random field model to characterize the spatial variability of soils, and efficiently calculates the likelihood function of soil layer thicknesses given a soil layer number by introducing the Normal-Inverse Wishart conjugate distribution. By this means, the model evidence can be solved efficiently, and the most possible profile is identified. The proposed method automatically identifies the most probable soil layer profile considering the statistical characteristics of Ic, and improves the reliability of the identification results.

       

    • loading
    • Ahmadi, M. M., Robertson, P. K., 2005. Thin-Layer Effects on the CPT qc Measurement. Canadian Geotechnical Journal, 42(5): 1302-1317. https://doi.org/10.1139/t05-036
      Betz, W., Papaioannou, I., Beck, J. L., et al., 2018. Bayesian Inference with Subset Simulation: Strategies and Improvements. Computer Methods in Applied Mechanics and Engineering, 331: 72-93. https://doi.org/10.1016/j.cma.2017.11.021
      Bishop, C. M., 2006. Pattern Recognition and Machine Learning. Springer, New York, 76-78.
      Bozorgzadeh, N., Harrison, J. P., Escobar, M. D., 2019. Hierarchical Bayesian Modelling of Geotechnical Data: Application to Rock Strength. Géotechnique, 69(12): 1056-1070. https://doi.org/10.1680/jgeot.17.P.282
      Cai, G. J., Liu, S. Y., Tong, L. Y., et al., 2009. Soil Classification Using CPTU Data Based upon Cluster Analysis Theory. Chinese Journal of Geotechnical Engineering, 31(3): 416-424 (in Chinese with English abstract). http://www.cqvip.com/QK/95758X/20093/29811796.html
      Cao, Z. J., Wang, Y., 2013. Bayesian Approach for Probabilistic Site Characterization Using Cone Penetration Tests. Journal of Geotechnical and Geoenvironmental Engineering, 139(2): 267-276. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000765
      Cao, Z. J., Zheng, S., Li, D. Q., 2019. Bayesian Identification of Soil Stratigraphy Based on Soil Behaviour Type Index. Canadian Geotechnical Journal, 56(4): 570-586. https://doi.org/10.1139/cgj-2017-0714
      Chen, L., Lin, W. B., Chen, P., et al., 2021. Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China. Journal of Earth Science, 32(4): 828-838. https://doi.org/10.1007/s12583-020-1396-5
      Chen, Y. H., 2020. Variability Analysis of Undrained Shear Strength of Coastal Soft Soil (Dissertation). Southeast University, Nanjing (in Chinese with English abstract).
      Ching, J., Wang, J. S., Juang, C. H., et al., 2015. Cone Penetration Test (CPT)-Based Stratigraphic Profiling Using the Wavelet Transform Modulus Maxima Method. Canadian Geotechnical Journal, 52(12): 1993-2007. https://doi.org/10.1139/cgj-2015-0027
      DiazDelaO, F. A., Garbuno-Inigo, A., Au, S. K., 2017. Bayesian Updating and Model Class Selection with Subset Simulation. Computer Methods in Applied Mechanics and Engineering, 317: 1102-1121. https://doi.org/10.1016/j.cma.2017.01.006
      Frühwirth-Schnatter, S., 2006. Finite Mixture and Markov Switching Models. Springer, New York, 141-143.
      Guan, Z., Wang, Y., 2022. CPT-Based Probabilistic Liquefaction Assessment Considering Soil Spatial Variability, Interpolation Uncertainty and Model Uncertainty. Computers and Geotechnics, 141: 104504. https://doi.org/10.1016/j.compgeo.2021.104504
      Hegazy, Y. A., Mayne, P. W., 2002. Objective Site Characterization Using Clustering of Piezocone Data. Journal of Geotechnical and Geoenvironmental Engineering, 128(12): 986-996. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(986)
      Huang, K., Sun, R. L., Yuan, S. Q., et al., 2022. Effect of Number of Pumping Tests and Prior Information on Hydraulic Conductivity Estimation of Three-Dimensional Heterogeneous Aquifer. Earth Science, 47(2): 689-699 (in Chinese with English abstract).
      Jefferies, M. G., Davies, M. P., 1993. Use of CPTu to Estimate Equivalent SPT N60. Geotechnical Testing Journal, 16(4): 458-468. https://doi.org/10.1520/gtj10286j
      Ku, C. S., Juang, C. H., Ou, C. Y., 2010. Reliability of CPT Ic as an Index for Mechanical Behaviour Classification of Soils. Géotechnique, 60(11): 861-875. https://doi.org/10.1680/geot.09.P.097
      Liu, S. Y., Cai, G. J., Zou, H. F., 2013. Practical Soil Classification Methods in China Based on Piezocone Penetration Tests. Chinese Journal of Geotechnical Engineering, 35(10): 1765-1776 (in Chinese with English abstract). http://www.cqvip.com/QK/95758X/201310/47672959.html
      Lunn, D., Jackson, C., Best, N., et al., 2012. The BUGS Book: A Practical Introduction to Bayesian Analysis. CRC Press, New York, 219-252.
      Miu, L. C., 2012. Mechanical Properties and Engineering Practice of Soft Soil. Science Press, Beijing, 3-7 (in Chinese).
      Murphy, K. P., 2012. Machine Learning: A Probabilistic Perspective. MIT Press, London, 125-161.
      Nobile, A., 2004. On the Posterior Distribution of the Number of Components in a Finite Mixture. The Annals of Statistics, 32(5): 2044-2073. https://doi.org/10.1214/009053604000000788
      Robertson, P. K., 1990. Soil Classification Using the Cone Penetration Test. Canadian Geotechnical Journal, 27(1): 151-158. https://doi.org/10.1139/t90-014
      Robertson, P. K., 2009. Interpretation of Cone Penetration Tests—A Unified Approach. Canadian Geotechnical Journal, 46(11): 1337-1355. https://doi.org/10.1139/T09-065
      Robertson, P. K., Campanella, R. G., 1983. Interpretation of Cone Penetration Tests. Part I: Sand. Canadian Geotechnical Journal, 20(4): 718-733. https://doi.org/10.1139/t83-078
      Robertson, P. K., Wride, C. E., 1998. Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test. Canadian Geotechnical Journal, 35(3): 442-459. https://doi.org/10.1139/t98-017
      Straub, D., Papaioannou, I., 2015. Bayesian Updating with Structural Reliability Methods. Journal of Engineering Mechanics, 141(3): 04014134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000839
      Tsionas, E. G., 2000. Numerical Bayesian Inference with Arbitrary Prior. Statistical Papers, 41(4): 437-451. https://doi.org/10.1007/BF02925762
      Wang, D. T., Chen, G. X., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506 (in Chinese with English abstract).
      Wang, X., Wang, H., Liang, R. Y., et al., 2019. A Semi-supervised Clustering-Based Approach for Stratification Identification Using Borehole and Cone Penetration Test Data. Engineering Geology, 248: 102-116. https://doi.org/10.1016/j.enggeo.2018.11.014
      Wang, Y., Huang, K., Cao, Z. J., 2013. Probabilistic Identification of Underground Soil Stratification Using Cone Penetration Tests. Canadian Geotechnical Journal, 50(7): 766-776. https://doi.org/10.1139/cgj-2013-0004
      Wang, Y., Huang, K., Cao, Z. J., 2014. Bayesian Identification of Soil Strata in London Clay. Géotechnique, 64(3): 239-246. https://doi.org/10.1680/geot.13.T.018
      Wu, S., Ching, J., Phoon, K. K., 2022. Quasi-Site-Specific Soil Property Prediction Using a Cluster-Based Hierarchical Bayesian Model. Structural Safety, 99: 102253. https://doi.org/10.1016/j.strusafe.2022.102253
      Zhang, C. H., Shi, J., Dai, J. Q., 1997. The Application of Piezocone Tests in China. Chinese Journal of Geotechnical Engineering, 19(1): 50-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC701.007.htm
      Zhang, Z., Tumay, M. T., 1999. Statistical to Fuzzy Approach toward CPT Soil Classification. Journal of Geotechnical and Geoenvironmental Engineering, 125(3): 179-186. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(179)
      Zhao, T. Y., Wang, Y., 2020. Interpolation and Stratification of Multilayer Soil Property Profile from Sparse Measurements Using Machine Learning Methods. Engineering Geology, 265: 105430. https://doi.org/10.1016/j.enggeo.2019.105430
      Zheng, S., Cao, Z. J., Li, D. Q., 2019. A Fast Bayesian Approach for CPT-Based Soil Stratification with BUS. In: Ching, J., Li, D. Q., Zhang, J., eds, Proceedings, 7th International Symposium on Geotechnical Safety and Risk, Research Publishing, Singapore, 364-369.
      蔡国军, 刘松玉, 童立元, 等, 2009. 基于聚类分析理论的CPTU土分类方法研究. 岩土工程学报, 31(3): 416-424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200903025.htm
      陈宇航, 2020. 滨海软弱土不排水抗剪强度变异性分析(硕士学位论文). 南京: 东南大学.
      黄康, 孙蓉琳, 袁淑卿, 等, 2022. 抽水组数和先验信息对估算三维非均质含水层渗透系数的影响. 地球科学, 47(2): 689-699. doi: 10.3799/dqkx.2021.013
      刘松玉, 蔡国军, 邹海峰, 2013. 基于CPTU的中国实用土分类方法研究. 岩土工程学报, 35(10): 1765-1776. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310002.htm
      谬林昌, 2012. 软土力学特性与工程实践. 北京: 科学出版社, 3-7.
      王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506. doi: 10.3799/dqkx.2021.070
      张诚厚, 施健, 戴济群, 1997. 孔压静力触探试验的应用. 岩土工程学报, 19(1): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2100.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (1010) PDF downloads(77) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return