• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 6
    Jun.  2023
    Turn off MathJax
    Article Contents
    Lu Guo, Tian Fanglei, He Dengfa, Liu Huan, Zhao Xiaohui, 2023. Structural Characteristics and Evolution of No.9 Strike-Slip Fault Zone in Gaoshiti-Moxi Area in Central Sichuan Basin. Earth Science, 48(6): 2238-2253. doi: 10.3799/dqkx.2022.505
    Citation: Lu Guo, Tian Fanglei, He Dengfa, Liu Huan, Zhao Xiaohui, 2023. Structural Characteristics and Evolution of No.9 Strike-Slip Fault Zone in Gaoshiti-Moxi Area in Central Sichuan Basin. Earth Science, 48(6): 2238-2253. doi: 10.3799/dqkx.2022.505

    Structural Characteristics and Evolution of No.9 Strike-Slip Fault Zone in Gaoshiti-Moxi Area in Central Sichuan Basin

    doi: 10.3799/dqkx.2022.505
    • Received Date: 2022-08-31
    • Publish Date: 2023-06-25
    • Multiple strike-slip faults have been identified in the Gaoshiti-Moxi area in the central Sichuan basin. In order to deepen the understanding of the structural geometry and kinematic characteristics of these strike-slip faults, based on deep drilling and high-precision three-dimensional seismic data in the central Sichuan basin, in this paper it describes in detail the structural geometry of the No.9 strike-slip fault zone in the Gaoshiti-Moxi area, and establishes a three-dimensional structural model of the fault. The formation and evolution process is reconstructed through structural back stripping and inversion. The No.9 strike-slip fault zone is nearly east-west trending, with an extension length of 60 km, showing a dextral transtensional fault. The fault zone develops horsetail structure, linear structure, oblique structure, and overlapping zones on the plane, with obvious segmentation characteristics. Typical strike-slip structural styles such as high-steep linear structure, 'Y'-shaped and anti-'Y'-shaped structures, flower structures are developed on the section. The different tectonic styles developed in different strata. The fault zone is composed of 7 main faults, and the development scale, inclination and connection mode of each fault slice are different. On the basis of pre-existing basement faults, the No.9 strike-slip fault zone experienced three stages of deformations: the embryonic development stage in the Late Sinian-Early Caledonian, the main growth stage in the Late Caledonian, and the inherited extension stage of Late Permian. The faults developed different growth patterns in Proterozoic-Lower Paleozoic: (1) the fault gradually grows upward from basement, and the fault throws of the upper and lower strata is consistent or gradually reduced; (2) the fault core is located in the Lower Paleozoic, the fault gradually propagated up and down during the active period, and the fault throw of the Lower Paleozoic strata was larger than that of the underlying strata.

       

    • loading
    • Chen, Z. Q., 2013. On Five Crustal Movements and Petroleum Exploration in Lower Paleozoic, Sichuan Basin. China Petroleum Exploration, 18(5): 15-23(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.05.003
      Deng, L., Yan, Q. R., Song, B., et al., 2021. Sedimentary Responses to Rifting of the Upper Yangtze Block (Sichuan Basin Area) in the Middle-Late Permian. Acta Petrologica Sinica, 37(8): 2465-2482(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.08.13
      Deng, S., Liu, Y. Q., Liu, J., et al., 2021. Structural Styles and Evolution Models of Intracratonic Strike-Slip Faults and the Implications for Reservoir Exploration and Appraisal: A Case Study of the Shunbei Area, Tarim Basin. Geotectonica et Metallogenia, 45(6): 1111-1126(in Chinese with English abstract).
      Gu, Z. D., Wang, Z. C., 2014. The Discovery of Neoproterozoic Extensional Structures and Its Significance for Gas Exploration in the Central Sichuan Block, Sichuan Basin, South China. Science China (Earth Sciences), 44(10): 2210-2220(in Chinese).
      Guan, S. W., Wu, L., Ren, R., et al., 2017. Distribution and Petroleum Prospect of Precambrian Rifts in the Main Cratons, China. Acta Petrolei Sinica, 38(1): 9-22(in Chinese with English abstract). doi: 10.1038/aps.2016.94
      Guan, S. W., Liang, H., Jiang, H., et al., 2022. Characteristics and Evolution of the Main Strike-Slip Fault Belts of the Central Sichuan Basin, Southwestern China, and Associated Structures. Earth Science Frontiers, 29(6): 252-264(in Chinese with English abstract).
      He, D. F., 2022. Formation, Evolution, Geologic Framework and Hydrocarbon Occurrence of Multi-Cycle Superimposed Sedimentary Basins in China. Earth Science Frontiers, 29(6): 24-59(in Chinese with English abstract).
      Hu, J., Jia, D., Wei, G. Q., et al., 2022. Seismic Reflection Analysis of the Deeply Buried Neoproterozoic Rift Basin beneath Sichuan Basin, Southern China. AAPG Bulletin, 106(4): 759-782. https://doi.org/10.1306/10212120127
      Jia, C. Z., Ma, D. B., Yuan, J. Y., et al., 2021. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strike-Slip Faults in the Tarim Basin. Natural Gas Industry, 41(8): 81-91(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.008
      Jiao, F. Z., Yang, Y., Ran, Q., et al., 2021. Distribution and Gas Exploration of the Strike-Slip Faults in the Central Sichuan Basin. Natural Gas Industry, 41(8): 92-101(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.009
      Li, S. B., 2017. Study on the Fracture Characteristics of Moxi-Gaoshiti Area in Sichuan Basin (Dissertation). China University of Petroleum, Dongying(in Chinese with English abstract).
      Li, L. S., Wang, Z. C., Xiao, A. C., et al., 2021. Rift System in Northern Yangtze Block during Nanhua Period: Implications from Gravity Anomaly and Sedimentology. Earth Science, 46(10): 3496-3508(in Chinese with English abstract).
      Li, R. N., Jiang, B., Zhou, S. Y., et al., 2021. Identification and Comprehensive Evaluation of Strike-Slip Faults in CN Shale Gas Area in Sichuan Basin. 11th Asia-Pacific Shale & Unconventional Resources Summit, Energy China Forum 2021, Shanghai (in Chinese).
      Li, W., Liu, J. J., Deng, S. H., et al., 2015. The Nature and Role of Late Sinian-Early Cambrian Tectonic Movement in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 36(5): 546-556, 563(in Chinese with English abstract).
      Liu, S. L., Cui, X. Z., Wang, C. L., et al., 2020. New Sedimentological and Geochronological Evidence for Mid-Neoproterozoic Rifting in Western Yangtze Block, South China. Earth Science, 45(8): 3082-3093(in Chinese with English abstract).
      Lu, G., Li, C. X., Li, W. Z., et al., 2021. Structural Geometry and Kinematics of Thrust Belts between the Dabashan and Eastern Sichuan Basin, South China Block: Constraints from (U-Th)/He Dating and Seismic Data. Geological Society of America Bulletin, 133(7-8): 1749-1764. https://doi.org/10.1130/b35781.1
      Lu, Y., Wang, S. X., Chen, S., et al., 2010. Computing Method about Intensity of Fault Activity and Its Application. Natural Gas Geoscience, 21(4): 612-616(in Chinese with English abstract).
      Ma, D. B., Wang, Z. C., Duan, S. F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      Qiu, Z. H., Zhou, L., Chen, X., et al., 2022. Identification of Strike-Slip Faults in Gaoshiti-Moxi Area of Sichuan Basin. Oil Geophysical Prospecting, 57(3): 647-655, 494(in Chinese with English abstract).
      Shi, Y. L., Huang, W. H., Wei, Q., et al., 2016. Deep Rift Identification with MT Inversion Constrained by Shallow Logging and Seismic Data. Oil Geophysical Prospecting, 51(6): 1233-1240, 1054(in Chinese with English abstract).
      Song, Y. T., Wu, G. H., Tian, W. Z., et al., 2022. Application of Navigation Pyramid Technology in the Identification of Strike Slip Faults in Gaomo Area, Sichuan Basin. Chemical Engineering Design Communications, 48(1): 19-20, 174(in Chinese with English abstract).
      Wang, P., Zang, D. G., He, X. H., et al., 2020. Role and Effect of Strike-Slip Faults in Exploration of Lower Permian in Sichuan Basin. The 32nd National Natural Gas Academic Annual Conference, Chongqing, 305-312(in Chinese).
      Wang, X. L., Liang, H., Zhu, Y. D., et al., 2021. Distribution Characteristics of Strike-Slip Faults in Central-Southern Sichuan and Their Relationship with Hydrocarbon Accumulation. Geophysical Exploration Technology Symposium 2021 of China Petroleum Institute, Chengdu(in Chinese).
      Wang, Z. C., Shi, Y. Z., Wen, L., et al., 2022. Exploring the Potential of Oil and Gas Resources in Sichuan Basin with Super Basin Thinking. Petroleum Exploration and Development, 49(5): 847-858(in Chinese with English abstract).
      Wei, G. Q., Yang, W., Zhang, J., et al., 2018. The Pre-Sinian Rift in Central Sichuan Basin and Its Control on Hydrocarbon Accumulation in the Overlying Strata. Petroleum Exploration and Development, 45(2): 179-189(in Chinese with English abstract).
      Yang, Z. R., Wang, X. J., Feng, X. K., et al., 2014. Geological Research and Significance of a Rift Valley in the Presinian Period in Central Sichuan Basin. Natural Gas Industry, 34(3): 80-85(in Chinese).
      Zhang, C., Pan, L., Ma, B. S., et al., 2021. Strike-Slip Fault Identification Technique and Its Application in the Central Sichuan Basin. 2021 IFEDC Organizing Committee, Qingdao(in Chinese with English abstract).
      Zhang, X., Ran, Q., Chen, K., et al., 2022. The Controlling Effect of Strike-Slip Fault on Dengying Formation Reservoir and Gas Enrichment in Anyue Gas Field in Central Sichuan Basin. Natural Gas Geoscience, 33(6): 917-928(in Chinese with English abstract).
      Zhong, Y., Li, Y. L., Zhang, X. B., et al., 2013. Features of Extensional Structures in Pre-Sinian to Cambrian Strata, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(5): 498-510(in Chinese with English abstract).
      Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451(in Chinese with English abstract).
      陈宗清, 2013. 论四川盆地下古生界5次地壳运动与油气勘探. 中国石油勘探, 18(5): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201305003.htm
      邓莉, 闫全人, 宋博, 等, 2021. 中-晚二叠世上扬子地块(四川盆地区)裂解的沉积响应. 岩石学报, 37(8): 2465-2482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202108013.htm
      邓尚, 刘雨晴, 刘军, 等, 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm
      谷志东, 汪泽成, 2014. 四川盆地川中地块新元古代伸展构造的发现及其在天然气勘探中的意义. 中国科学: 地球科学, 44(10): 2210-2220. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410010.htm
      管树巍, 吴林, 任荣, 等, 2017. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景. 石油学报, 38(1): 9-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701002.htm
      管树巍, 梁瀚, 姜华, 等, 2022. 四川盆地中部主干走滑断裂带及伴生构造特征与演化. 地学前缘, 29(6): 252-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206017.htm
      何登发, 2022. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律. 地学前缘, 29(6): 24-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206003.htm
      贾承造, 马德波, 袁敬一, 等, 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制. 天然气工业, 41(8): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108012.htm
      焦方正, 杨雨, 冉崎, 等, 2021. 四川盆地中部地区走滑断层的分布与天然气勘探. 天然气工业, 41(8): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108013.htm
      李树博, 2017. 四川盆地磨溪—高石梯地区断裂特征研究(硕士学位论文). 东营: 中国石油大学.
      李路顺, 汪泽成, 肖安成, 等, 2021. 扬子北缘南华纪裂谷系统: 基于重力异常及沉积学证据. 地球科学, 46(10): 3496-3508. doi: 10.3799/dqkx.2020.395
      李睿宁, 蒋波, 周诗雨, 等, 2021. 四川盆地CN页岩气区走滑断层特征识别及综合评价. 上海: ECF国际页岩气论坛2021第十一届亚太页岩油气暨非常规能源峰会.
      李伟, 刘静江, 邓胜徽, 等, 2015. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用. 石油学报, 36(5): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htm
      刘石磊, 崔晓庄, 汪长林, 等, 2020. 扬子西缘新元古代中期裂谷作用: 来自年代学与沉积学的新证据. 地球科学, 45(8): 3082-3093. doi: 10.3799/dqkx.2020.145
      卢异, 王书香, 陈松, 等, 2010. 一种断裂活动强度计算方法及其应用. 天然气地球科学, 21(4): 612-616. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201004016.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      邱泽华, 周路, 陈骁, 等, 2022. 四川盆地高石梯—磨溪地区走滑断层识别. 石油地球物理勘探, 57(3): 647-655, 494. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202203015.htm
      石艳玲, 黄文辉, 魏强, 等, 2016. 电磁井震约束反演识别川中深层裂谷. 石油地球物理勘探, 51(6): 1233-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201606025.htm
      宋玉婷, 邬光辉, 田威振, 等, 2022. 导航金字塔技术在四川盆地高磨地区走滑断裂识别中的应用. 化工设计通讯, 48(1): 19-20, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-WGTX202201009.htm
      王鹏, 臧殿光, 何小会, 等, 2020. 走滑断裂在四川盆地下二叠统勘探中的作用及效果. 重庆: 第32届全国天然气学术年会论文集, 305-312.
      王新岚, 梁虹, 朱亚东, 等, 2021. 川中-川南走滑断裂展布特征及与油气成藏关系. 成都: 中国石油学会2021年物探技术研讨会.
      汪泽成, 施亦做, 文龙, 等, 2022. 用超级盆地思维挖掘四川盆地油气资源潜力的探讨. 石油勘探与开发, 49(5): 847-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205002.htm
      魏国齐, 杨威, 张健, 等, 2018. 四川盆地中部前震旦系裂谷及对上覆地层成藏的控制. 石油勘探与开发, 45(2): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201802001.htm
      杨志如, 王学军, 冯许魁, 等, 2014. 川中地区前震旦系裂谷研究及其地质意义. 天然气工业, (3): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403018.htm
      张晨, 潘力, 马兵山, 等, 2021. 四川盆地川中地区走滑断层识别技术与应用效果. 青岛: 2021油气田勘探与开发国际会议.
      张旋, 冉崎, 陈康, 等, 2022. 川中地区安岳气田走滑断裂对灯影组储层及含气富集的控制作用. 天然气地球科学, 33(6): 917-928. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202206006.htm
      钟勇, 李亚林, 张晓斌, 等, 2013. 四川盆地下组合张性构造特征. 成都理工大学学报(自然科学版), 40(5): 498-510. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305002.htm
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (638) PDF downloads(135) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return