Citation: | Feng Xinbin, Wang Xun, Sun Guangyi, Yuan Wei, 2022. Research Progresses and Challenges of Mercury Biogeochemical Cycling in Global Vegetation Ecosystem. Earth Science, 47(11): 4098-4107. doi: 10.3799/dqkx.2022.882 |
Agnan, Y., Le Dantec, T., Moore, C. W., et al., 2016. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database. Environ. Sci. Technol., 50(2): 507-524. https://doi.org/10.1021/acs.est.5b04013
|
Arnold, J., Gustin, M. S., Weisberg, P. J., 2018. Evidence for Nonstomatal Uptake of Hg by Aspen and Translocation of Hg from Foliage to Tree Rings in Austrian Pine. Environmental Science & Technology, 52(3): 1174-1182. https://doi.org/10.1021/acs.est.7b04468
|
Bergquist, B. A., Blum, J. D., 2007. Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849): 417-420. https://doi.org/10.1126/science.1148050
|
Bishop, K. H., Lee, Y. H., Munthe, J., et al., 1998. Xylem Sap as a Pathway for Total Mercury and Methylmercury Transport from Soils to Tree Canopy in the Boreal Forest. Biogeochemistry, 40: 101-113. doi: 10.1023/A:1005983932240
|
Blackwell, B. D., Driscoll, C. T., 2015. Deposition of Mercury in Forests along a Montane Elevation Gradient. Environmental Science & Technology, 49(9): 5363-5370. https://doi.org/10.1021/es505928w
|
Blackwell, B. D., Driscoll, C. T., Maxwell, J. A., et al., 2014. Changing Climate Alters Inputs and Pathways of Mercury Deposition to Forested Ecosystems. Biogeochemistry, 119: 215-228. doi: 10.1007/s10533-014-9961-6
|
Chen, J. B., Hintelmann, H., Feng, X. B., et al., 2012. Unusual Fractionation of Both Odd and Even Mercury Isotopes in Precipitation from Peterborough, ON, Canada. Geochimica et Cosmochimica Acta, 90: 33-46. doi: 10.1016/j.gca.2012.05.005
|
Cui, L., Feng, X., Lin, C. J., et al., 2014. Accumulation and Translocation of 198Hg in Four Crop Species. Environmental Toxicology and Chemistry, 33(2): 334-340. https://doi.org/10.1002/etc.2443
|
Clarkson, T. W., 1993. Mercury: Major Issues in Environmental Health. Pharmaceutical Biology, 100: 31-38. https://doi.org/10.1289/ehp.9310031
|
Demers, J. D., Blum, J. D., Zak, D. R., 2013. Mercury Isotopes in a Forested Ecosystem: Implications for Air- Surface Exchange Dynamics and the Global Mercury Cycle. Global Biogeochemical Cycles, 27: 222-238. doi: 10.1002/gbc.20021
|
Enrico, M., Roux, G. L., Marusczak, N., et al., 2016. Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environmental Science & Technology, 50(5): 2405-2412. https://doi.org/10.1021/acs.est.5b06058
|
Feng, X. B., Chen, J. B., Fu, X. W., et al., 2013. Progresses on Environmental Geochemistry of Mercury. Bulletin of Mineralogy, Petrology and Geochemistry, 32(5): 503-530 (in Chinese with English abstract).
|
Feng, X. B., Fu, X. W., Jonas, S., et al., 2011. Earth Surface Natural Mercury Emission: Research Progress and Perspective. Chinese Journal of Ecology, 30(5): 845-856 (in Chinese with English abstract).
|
Frescholtz, T. E., Gustin, M. S., Schorran, D. E., et al., 2003. Assessing the Source of Mercury in Foliar Tissue of Quaking Aspen. Environ. Toxicol. Chem., 22(9): 2114-2119. https://doi.org/10.1002/etc.5620220922
|
Fu, X., Feng, X., Zhu, W., et al., 2010. Elevated Atmospheric Deposition and Dynamics of Mercury in a Remote Upland Forest of Southwestern China. Environmental Pollution (Barking, Essex : 1987), 158(6): 2324-2333. https://doi.org/10.1016/j.envpol.2010.01.032
|
Fu, X., Heimburger, L. E., Sonke, J. E., 2014. Collection of Atmospheric Gaseous Mercury for Stable Isotope Analysis Using Iodine- and Chlorine-Impregnated Activated Carbon Traps. Journal of Analytical Atomic Spectrometry, 29: 841-852. doi: 10.1039/c3ja50356a
|
Fu, X., Zhang, H., Liu, C., et al., 2019. Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. Environmental Science & Technology, 53(23): 13748-13756. https://doi.org/10.1021/acs.est.9b05016
|
Fu, X., Zhu, W., Zhang, H., et al., 2016a. Depletion of Atmospheric Gaseous Elemental Mercury by Plant Uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 16: 12861-12873. doi: 10.5194/acp-16-12861-2016
|
Fu, X. W., Marusczak, N., Heimburger, L. E., et al., 2016b. Atmospheric Mercury Speciation Dynamics at the High-Altitude Pic du Midi Observatory, Southern France. Atmospheric Chemistry and Physics, 16: 5623-5639. doi: 10.5194/acp-16-5623-2016
|
Gbor, P. K., Wen, D. Y., Meng, F., et al., 2006. Improved Model for Mercury Emission, Transport and Deposition. Atmospheric Environment, 40: 973-983. doi: 10.1016/j.atmosenv.2005.10.040
|
Grandjean, P., Pichery, C., Bellanger, M., et al., 2012. Calculation of Mercury's Effects on Neurodevelopment. Environmental Health Perspectives, 120(12): A452. https://doi.org/10.1289/ehp.1206033
|
Hanson, P. J., Lindberg, S. E., Tabberer, T. A., et al., 1995. Foliar Exchange of Mercury Vapor: Evidence for a Compensation Point. Water Air and Soil Pollution, 80(1): 373-382.
|
Jiskra, M., Sonke, J. E., Obrist, D., et al., 2018. A Vegetation Control on Seasonal Variations in Global Atmospheric Mercury Concentrations. Nature Geoscience, 11: 244-250. doi: 10.1038/s41561-018-0078-8
|
Kang, H. H., Liu, X. H., Guo, J. M., et al., 2019. Characterization of Mercury Concentration from Soils to Needle and Tree Rings of Schrenk Spruce (Picea Schrenkiana) of the Middle Tianshan Mountains, Northwestern China. Ecological Indicators, 104: 24-31. doi: 10.1016/j.ecolind.2019.04.066
|
Khalizov, A. F., Viswanathan, B., Larregaray, P., et al., 2003. A Theoretical Study on the Reactions of Hg with Halogens: Atmospheric Implications. The Journal of Physical Chemistry A, 107(33): 6360-6365. https://doi.org/10.1021/jp0350722
|
Kritee, K., Motta, L. C., Blum, J. D., et al., 2018. Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2(5): 432-440. https://doi.org/10.1021/acsearthspacechem.7b00056
|
Laacouri, A., Nater, E. A., Kolka, R. K., 2013. Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, USA. Environmental Science & Technology, 47(18): 10462-10470. https://doi.org/10.1021/es401357z
|
Leonard, T. L., Taylor, G. E., Gustin, M. S., et al., 1998. Mercury and Plants in Contaminated Soils: 1. Uptake, Partitioning, and Emission to the Atmosphere. Environmental Toxicology and Chemistry, 17: 2063-2071. doi: 10.1002/etc.5620171024
|
Lindberg, S., Bullock, R., Ebinghaus, R., et al., 2007. A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Ambio, 36(1): 19-32. https://doi.org/10.1579/0044-7447(2007)36[19:asopau]2.0.co;2
|
Lindberg, S. E., Jackson, D. R., Huckabee, J. W., et al., 1979. Atmospheric Emission and Plant Uptake of Mercury from Agricultural Soils near the Almaden Mercury Mine. Journal of Environmental Quality, 8: 572-578.
|
Lindberg, S. E., Kim, K. H., Munthe, J., 1995. The Precise Measurement of Concentration Gradients of Mercury in Air over Soils: A Review of Past and Recent Measurements. Water, Air, and Soil Pollution, 80(1-4): 383-392. https://doi.org/10.1007/BF01189688
|
Liu, Y., Tao, H., Wang, Y., et al., 2021. Gaseous Elemental Mercury [Hg(0)] Oxidation in Poplar Leaves through a Two-Step Single-Electron Transfer Process. Environmental Science & Technology Letters, 8(12): 1098-1103.
|
Liu, Y. W., Liu, G. L., Wang, Z. W., et al., 2022. Understanding Foliar Accumulation of Atmospheric Hg in Terrestrial Vegetation: Progress and Challenges. Critical Reviews in Environmental Science and Technology, 54(24): 4331-4352.
|
Lucotte, M., Schetagne, R., Therien, N., et al., 1999. Mercury in the Biogeochemical Cycle Natural Environments and Hydroelectric Reservoirs of Northern Quebec (Canada). Springer, Amsterdam, 1-334.
|
Luo, Y., Duan, L., Driscoll, C. T., et al., 2016. Foliage/Atmosphere Exchange of Mercury in a Subtropical Coniferous Forest in South China. Journal of Geophysical Research-Biogeosciences, 121: 2006-2016. doi: 10.1002/2016JG003388
|
Manceau, A., Lemouchi, C., Enescu, M., et al., 2015. Formation of Mercury Sulfide from Hg(Ⅱ)-Thiolate Complexes in Natural Organic Matter. Environmental Science & Technology, 49(16): 9787-9796. https://doi.org/10.1021/acs.est.5b02522
|
Manceau, A., Wang, J., Rovezzi, M., et al., 2018. Biogenesis of Mercury-Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. Environ. Sci. Technol., 52(7): 3935-3948. https://doi.org/10.1021/acs.est.7b05452
|
Manoj, M. C., Srivastava, J., Uddandam, P. R., et al., 2020. A 2 000 Year Multi-Proxy Evidence of Natural/Anthropogenic Influence on Climate from the Southwest Coast of India. Journal of Earth Science, 31(5): 1029-1044. doi: 10.1007/s12583-020-1336-4
|
Mao, X., Liu, L. J., Song, L., et al., 2021. Ecological Environment Evolution and Is Influencing Factors in Baiyangdian Lake in Recent 70 Years. Earth Science, 46 (7): 2609-2620 (in Chinese with English abstract).
|
Obrist, D., Agnan, Y., Jiskra, M., et al., 2017. Tundra Uptake of Atmospheric Elemental Mercury Drives Arctic Mercury Pollution. Nature, 547(7662): 201-204. https://doi.org/10.1038/nature22997
|
Obrist, D., Kirk, J. L., Zhang, L., et al., 2018. A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio, 47(2): 116-140. https://doi.org/10.1007/s13280-017-1004-9
|
Obrist, D., Roy, E. M., Harrison, J. L., et al., 2021. Previously Unaccounted Atmospheric Mercury Deposition in a Midlatitude Deciduous Forest. PNAS, 118(29): e2105477118. https://doi.org/10.1073/pnas.2105477118
|
Outridge, P. M., Mason, R. P., Wang, F., et al., 2018. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52(20): 11466-11477.
|
Pereira, E., Vale, C., Tavares, C. F., et al., 2005. Mercury in Plants from Fields Surrounding a Contaminated Channel of Ria de Aveiro, Portugal. Soil and Sediment Contamination: An International Journal, 14(6): 571-577. https://doi.org/10.1080/15320380500263774
|
Pirrone, N., Cinnirella, S., Feng, X., et al., 2010. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmospheric Chemistry and Physics, 10(13): 5951-5964. doi: 10.5194/acp-10-5951-2010
|
Selin, N. E., Jacob, D. J., Yantosca, R. M., et al., 2008. Global 3-D Land-Ocean-Atmosphere Model for Mercury: Present-Day versus Preindustrial Cycles and Anthropogenic Enrichment Factors for Deposition. Global Biogeochemical Cycles, 22(2): 1-13.
|
Shah, V., Jacob, D. J., Thackray, C. P., et al., 2021. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. Environmental Science & Technology, 55(21): 14445-14456. https://doi.org/10.1021/acs.est.1c03160
|
Shetty, S. K., Lin, C. J., Streets, D. G., et al., 2008. Model Estimate of Mercury Emission from Natural Sources in East Asia. Atmospheric Environment, 42: 8674-8685. doi: 10.1016/j.atmosenv.2008.08.026
|
Smith-Downey, N. V., Sunderl, E. M., Jacob, D. J., 2010. Anthropogenic Impacts on Global Storage and Emissions of Mercury from Terrestrial Soils: Insights from a New Global Model. Journal of Geophysical Research-Atmospheres, 115: 227-235.
|
Sommar, J., Osterwalder, S., Zhu, W., 2020. Recent Advances in Understanding and Measurement of Hg in the Environment: Surface-Atmosphere Exchange of Gaseous Elemental Mercury (Hg0). Sci. Total Environ., 721: 137648. https://doi.org/10.1016/j.scitotenv.2020.137648
|
Sommar, J., Zhu, W., Lin, C. J., et al., 2013a. Field Approaches to Measure Hg Exchange between Natural Surfaces and the Atmosphere—A Review. Critical Reviews in Environmental Science and Technology, 43(15): 1657-1739. https://doi.org/10.1080/10643389.2012.671733
|
Sommar, J., Zhu, W., Shang, L. H., et al., 2013b. A Whole-Air Relaxed Eddy Accumulation Measurement System for Sampling Vertical Vapour Exchange of Elemental Mercury. Tellus B: Chemical and Physical Meteorology, 65(1): 19940. https://doi.org/10.3402/tellusb.v65i0.19940
|
St Louis, V. L., Graydon, J. A., Lehnherr, I., et al., 2019. Atmospheric Concentrations and Wet/Dry Loadings of Mercury at the Remote Experimental Lakes Area, Northwestern Ontario, Canada. Environmental Science & Technology, 53: 8017-8026.
|
St Louis, V. L., Rudd, J. W., Kelly, C. A., et al., 2001. Importance of the Forest Canopy to Fluxes of Methyl Mercury and Total Mercury to Boreal Ecosystems. Environmental Science & Technology, 35(15): 3089-3098. https://doi.org/10.1021/es001924p
|
Stamenkovic, J., Gustin, M. S, 2009. Nonstomatal versus Stomatal Uptake of Atmospheric Mercury. Environmental Science & Technology, 43(5): 1367-1372. https://doi.org/10.1021/es801583a
|
Stein, E. D., Cohen, Y., Winer, A. M., 1996. Environmental Distribution and Transformation of Mercury Compounds. Critical Reviews in Environmental Science and Technology, 26(1): 1-43. https://doi.org/10.1080/10643389609388485
|
Streets, D. G., Devane, M. K., Lu, Z., et al., 2011. All-Time Releases of Mercury to the Atmosphere from Human Activities. Environ. Sci. Technol., 45(24): 10485-10491. https://doi.org/10.1021/es202765m
|
Streets, D. G., Horowitz, H. M., Jacob, D. J., et al., 2017. Total Mercury Released to the Environment by Human Activities. Environmental Science & Technology, 51(11): 5969-5977. https://doi.org/10.1021/acs.est.7b00451
|
UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, UN-Environment Programme, Switzerland.
|
UNEP, 2018. Global Mercury Assessment 2018. Chemicals and Health Branch, UN-Environment Programme, Switzerland.
|
Wang, B., Yuan, W., Wang, X., et al., 2022a. Canopy-Level Flux and Vertical Gradients of Hg0 Stable Isotopes in Remote Evergreen Broadleaf Forest Show Year-around Net Hg0 Deposition. Environmental Science & Technology, 56(9): 5950-5959. https://doi.org/10.1021/acs.est.2c00778
|
Wang, J., Man, Y., Yin, R., et al., 2022b. Isotopic and Spectroscopic Investigation of Mercury Accumulation in Houttuynia Cordata Colonizing Historically Contaminated Soil. Environmental Science & Technology, 56(12): 7997-8007. https://doi.org/10.1021/acs.est.2c00909
|
Wang, X., Yuan, W., Lin, C. J., et al., 2022c. Mercury Cycling and Isotopic Fractionation in Global Forests. Critical Reviews in Environmental Science and Technology, 52(21): 3763-3786. https://doi.org/10.1080/10643389.2021.1961505
|
Wang, J., Shaheen, S. M., Anderson, C. W. N., et al., 2020a. Nanoactivated Carbon Reduces Mercury Mobility and Uptake by Oryza Sativa L: Mechanistic Investigation Using Spectroscopic and Microscopic Techniques. Environ. Sci. Technol., 54(5): 2698-2706. https://doi.org/10.1021/acs.est.9b05685
|
Wang, J. J., Guo, Y. Y., Guo, D. L., et al., 2012. Fine Root Mercury Heterogeneity: Metabolism of Lower- Order Roots as an Effective Route for Mercury Removal. Environ. Sci. Technol., 46(2): 769-777. https://doi.org/10.1021/es2018708
|
Wang, X., Luo, J., Yuan, W., et al., 2020b. Global Warming Accelerates Uptake of Atmospheric Mercury in Regions Experiencing Glacier Retreat. PNAS, 117(4): 2049-2055. https://doi.org/10.1073/pnas.1906930117
|
Wang, X., Yuan, W., Lin, C. J., et al., 2020c. Underestimated Sink of Atmospheric Mercury in a Deglaciated Forest Chronosequence. Environmental Science & Technology, 54(13): 8083-8093. https://doi.org/10.1021/acs.est.0c01667
|
Wang, X., Bao, Z., Lin, C. J., et al., 2016. Assessment of Global Mercury Deposition through Litterfall. Environmental Science & Technology, 50(16): 8548-8557. https://doi.org/10.1021/acs.est.5b06351
|
Wang, X., Luo, J., Yin, R., et al., 2017a. Using Mercury Isotopes to Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environ. Sci. Technol., 51(2): 801-809. https://doi.org/10.1021/acs.est.6b03806
|
Wang, X., Yuan, W., Feng, X., 2017b. Global Review of Mercury Biogeochemical Processes in Forest Ecosystems. Progress in Chemistry, 29: 970-980.
|
Wang, X., Yuan, W., Lin, C. J., et al., 2019. Climate and Vegetation as Primary Drivers for Global Mercury Storage in Surface Soil. Environmental Science & Technology, 53(18): 10665-10675. https://doi.org/10.1021/acs.est.9b02386
|
Wang, X., Yuan, W., Lin, C. J., et al., 2021. Stable Mercury Isotopes Stored in Masson Pinus Tree Rings as Atmospheric Mercury Archives. J. Hazard. Mater., 415: 125678. https://doi.org/10.1016/j.jhazmat.2021.125678
|
Wei, Y., Yang, B., Xia, H. D., et al., 2021. Paleovegetation and Paleoclimate during Mid-Late Eocene in Fushun Basin. Earth Science, 46(5): 1848-1861 (in Chinese with English abstract).
|
Wohlgemuth, L., Rautio, P., Ahrends, B., et al., 2022. Physiological and Climate Controls on Foliar Mercury Uptake by European Tree Species. Biogeosciences, 19: 1335-1353. doi: 10.5194/bg-19-1335-2022
|
Wright, L. P., Zhang, L., Marsik, F. J., 2016. Overview of Mercury Dry Deposition, Litterfall, and Throughfall Studies. Atmospheric Chemistry and Physics, 16: 13399-13416. doi: 10.5194/acp-16-13399-2016
|
Yang, Y., Yanai, R. D., Montesdeoca, M., et al., 2017. Measuring Mercury in Wood: Challenging But Important. International Journal of Environmental Analytical Chemistry, 97(5): 456-467. https://doi.org/10.1080/03067319.2017.1324852
|
Yuan, S. L., Chen, J. B., Hintelmann, H., et al., 2022. Event-Based Atmospheric Precipitation Uncovers Significant Even and Odd Hg Isotope Anomalies Associated with the Circumpolar Vortex. Environmental Science & Technology, 56(17): 12713-12722. https://doi.org/10.1021/acs.est.2c02613
|
Yuan, W., Sommar, J., Lin, C. J., et al., 2019. Stable Isotope Evidence Shows Re-Emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. Environ. Sci. Technol., 53(2): 651-660. https://doi.org/10.1021/acs.est.8b04865
|
Zeng, S., Wang, X., Yuan, W., et al., 2022. Mercury Accumulation and Dynamics in Montane Forests along an Elevation Gradient in Southwest China. Journal of Environmental Sciences (China), 119: 1-10. https://doi.org/10.1016/j.jes.2021.10.015
|
Zhang, Y., Song, Z., Huang, S., et al., 2021. Global Health Effects of Future Atmospheric Mercury Emissions. Nature Communications, 12(1): 3035. https://doi.org/10.1038/s41467-021-23391-7
|
Zheng, W., Hintelmann, H., 2009. Mercury Isotope Fractionation during Photoreduction in Natural Water is Controlled by Its Hg/DOC Ratio. Geochimica et Cosmochimica Acta, 73: 6704-6715. doi: 10.1016/j.gca.2009.08.016
|
Zheng, W., Hintelmann, H., 2010. Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds. The Journal of Physical Chemistry A, 114(12): 4246-4253. https://doi.org/10.1021/jp9111348
|
Zheng, W., Obrist, D., Weis, D., et al., 2016. Mercury Isotope Compositions across North American Forests. Global Biogeochemical Cycles, 30: 1475-1492. doi: 10.1002/2015GB005323
|
Zhou, J., Obrist, D., 2021. Global Mercury Assimilation by Vegetation. Environmental Science & Technology, 55(20): 14245-14257. https://doi.org/10.1021/acs.est.1c03530
|
Zhou, J., Obrist, D., Dastoor, A., et al., 2021. Vegetation Uptake of Mercury and Impacts on Global Cycling. Nature Reviews Earth & Environment, 2(4): 269-284.
|
Zhu, W., Lin, C. J., Wang, X., et al., 2016. Global Observations and Modeling of Atmosphere-Surface Exchange of Elemental Mercury: A Critical Review. Atmospheric Chemistry and Physics, 16: 4451-4480.
|
Zhu, W., Sommar, J., Lin, C. J., et al., 2015a. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods-Part I: Data Comparability and Method Characteristics. Atmospheric Chemistry and Physics, 15: 685-702. doi: 10.5194/acp-15-685-2015
|
Zhu, W., Sommar, J., Lin, C. J., et al., 2015b. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods-Part Ⅱ: Bias and Uncertainty Analysis. Atmospheric Chemistry and Physics, 15: 5359-5376. doi: 10.5194/acp-15-5359-2015
|
冯新斌, 陈玖斌, 付学吾, 等, 2013. 汞的环境地球化学研究进展. 矿物岩石地球化学通报, 32(5): 503-530. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305001.htm
|
冯新斌, 付学吾, Jonas, S., 等, 2011. 地表自然过程排汞研究进展及展望. 生态学杂志, 30(5): 845-856. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201105002.htm
|
毛欣, 刘林敬, 宋磊, 等, 2021. 白洋淀近70年生态环境演化过程及影响因素. 地球科学, 46(7): 2609-2620. doi: 10.3799/dqkx.2020.203
|
韦一, 杨兵, 夏浩东, 等, 2021. 抚顺盆地中-晚始新世古植被与古气候. 地球科学, 46(5): 1848-1861. doi: 10.3799/dqkx.2020.142
|