Citation: | Huang Xin, Jin Menggui, Liang Xing, Ma Bin, Zhang Jie, Cao Mingda, Zhang Zhixin, Su Jingwen, 2024. Riverine Water Chemistry and Rock Weathering Processes of Qingyi River Basin. Earth Science, 49(7): 2614-2626. doi: 10.3799/dqkx.2023.005 |
An, Y. L., Lü, J. M., Luo, J., et al., 2018. Chemical Weathering and CO2 Consumption of Chishuihe River Basin, Guizhou Province. Advances in Earth Science, 33(2): 179-188 (in Chinese with English abstract).
|
Bai, L. H., Shi, W. Z., Zhang, X. M., et al., 2021. Characteristics of Permian Marine Shale and Its Sedimentary Environment in Xuanjing Area, South Anhui Province, Lower Yangtze Area. Earth Science, 46(6): 2204-2217 (in Chinese with English abstract).
|
Dupré, B., Dessert, C., Oliva, P., et al., 2003. Rivers, Chemical Weathering and Earth's Climate. Comptes Rendus-Geoscience, 335(16): 1141-1160. https://doi.org/10.1016/j.crte.2003.09.015
|
Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
|
Galy, A., France-Lanord, C., 1999. Weathering Processes in the Ganges-Brahmaputra Basin and the Riverine Alkalinity Budget. Chemical Geology, 159(1-4): 31-60. https://doi.org/10.1016/S0009-2541(99)00033-9
|
Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090.10.1126/science. 170.3962.1088 doi: 10.1126/science.170.3962.1088
|
Hu, C. S., Tian, J. M., He, C. B., et al., 2021. Development Causes of the Qingyijiang River on the Northern Piedmont of the Huangshan Mountain and Its Relationship with the Channelization of the Yangtze River. Scientia Geographica Sinica, 41(10): 1862-1872 (in Chinese with English abstract).
|
Huang, X., Jin, M. G., Ma, B., et al., 2022. Identifying Nitrate Sources and Transformation in Groundwater in a Large Subtropical Basin under a Framework of Groundwater Flow Systems. Journal of Hydrology, 610: 127943. https://doi.org/10.1016/j.jhydrol.2022.127943
|
Huang, X. W., 2019. Study on the Sources and Transformation of Sulfate and Its Environmental Significance in Northern Mount Huangshan Watershed (Dissertation). Anhui University of Technology, Ma'anshan (in Chinese with English abstract).
|
Larssen, T., Seip, H. M., Semb, A., et al., 1999. Acid Deposition and Its Effects in China: An Overview. Environmental Science & Policy, 2(1): 9-24. https://doi.org/10.1016/S1462-9011(98)00043-4
|
Li, S. L., Chetelat, B., Yue, F. J., et al., 2014. Chemical Weathering Processes in the Yalong River Draining the Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 74-84. https://doi.org/10.1016/j.jseaes.2014.03.011
|
Li, S. Y., Bush, R. T., 2015. Changing Fluxes of Carbon and Other Solutes from the Mekong River. Scientific Reports, 5: 16005. https://doi.org/10.1038/srep16005
|
Liu, B. J., Zhao, Z. Q., Li, S. L., et al., 2013. Characteristics of Silicate Rock Weathering in Cold Temperate Zone: A Case Study of Nenjiang River, China. Chinese Journal of Ecology, 32(4): 1006-1016 (in Chinese with English abstract).
|
Liu, W. J., Shi, C., Xu, Z. F., et al., 2016. Water Geochemistry of the Qiantangjiang River, East China: Chemical Weathering and CO2 Consumption in a Basin Affected by Severe Acid Deposition. Journal of Asian Earth Sciences, 127(3): 246-256. https://doi.org/10.1016/j.jseaes.2016.06.010
|
Lü, J. M., 2018. The Hydrochemical Characteristics and Source-Sink Effects for Atmospheric CO2 of Small Karst River under the Influence of Anthropogenic Activities (Dissertation). Guizhou University, Guiyang (in Chinese with English abstract).
|
Meybeck, M., 2003. 5.08-Global Occurrence of Major Elements in Rivers. Treatise on Geochemistry, 5(1): 207-223. https://doi.org/10.1016/B0-08-043751-6/05164-1
|
Millot, R., Gaillardet, J. É., Dupré, B., et al., 2003. Northern Latitude Chemical Weathering Rates: Clues from the Mackenzie River Basin, Canada. Geochimica et Cosmochimica Acta, 67(7): 1305-1329. https://doi.org/10.1016/S0016-7037(02)01207-3
|
Moon, S., Huh, Y., Qin, J. H., et al., 2007. Chemical Weathering in the Hong (Red) River Basin: Rates of Silicate Weathering and Their Controlling Factors. Geochimica et Cosmochimica Acta, 71(6): 1411-1430. https://doi.org/10.1016/j.gca.2006.12.004
|
Perrin, A. S., Probst, A., Probst, J. L., 2008. Impact of Nitrogenous Fertilizers on Carbonate Dissolution in Small Agricultural Catchments: Implications for Weathering CO2 Uptake at Regional and Global Scales. Geochimica et Cosmochimica Acta, 72(13): 3105-3123. https://doi.org/10.1016/j.gca.2008.04.011
|
Qin, X. Q., Jiang, Z. C., Zhang, L. K., et al., 2015. The Difference of the Weathering Rate between Carbonate Rocks and Silicate Rocks and Its Effects on the Atmospheric CO2 Consumption in the Pearl River Basin. Geological Bulletin of China, 34(9): 1749-1757 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2015.09.016
|
Qiu, X. L., Wang, B. L., Liang, C. S., et al., 2019. Impacts of Damming on Riverine Water Chemistry and Chemical Weathering Rate Estimation in Basins—A Case Study from the Sancha River and the Maotiao River. Earth and Environment, 47(6): 768-776 (in Chinese with English abstract).
|
Roy, S., Gaillardet, J., Allègre, C. J., 1999. Geochemistry of Dissolved and Suspended Loads of the Seine River, France: Anthropogenic Impact, Carbonate and Silicate Weathering. Geochimica et Cosmochimica Acta, 63(9): 1277-1292. https://doi.org/10.1016/S0016-7037(99)00099-X
|
Shi, C. E., Deng, X. L., Yang, Y. J., et al., 2015. The Trend of Precipitation Acidity in Anhui Province from 1992 to 2013 and Its Possible Reasons. Journal of Nanjing University (Natural Sciences), 51(3): 508-516 (in Chinese with English abstract).
|
Shi, C. E., Qiu, M. Y., Zhang, A. M., et al., 2010. Spatiotemporal Trends and the Impact Factors of Acid Rain in Anhui Province. Environmental Science, 31(6): 1675-1681 (in Chinese with English abstract).
|
Suchet, P. A., Probst, J. L., 2017. A Global Model for Present-Day Atmospheric/Soil CO2 Consumption by Chemical Erosion of Continental Rocks (GEM-CO2). Tellus B: Chemical & Physical Meteorology, 47(1-2): 273-280. https://doi.org/10.3402/tellusb.v47i1-2.16047
|
Tao, Z. H., Zhao, Z. Q., Zhang, D., et al., 2015. Chemical Weathering in the Three Rivers (Jinshajiang, Lancangjiang, and Nujiang) Watershed, Southwest China. Chinese Journal of Ecology, 34(8): 2297-2308 (in Chinese with English abstract).
|
Ulloa-Cedamanos, F., Probst, A., Moussa, I., et al., 2021. Chemical Weathering and CO2 Consumption in a Multi-Lithological Karstic Critical Zone: Long Term Hydrochemical Trends and Isotopic Survey. Chemical Geology, 585: 120567. https://doi.org/10.1016/j.chemgeo.2021.120567
|
Wang, Y. X., Ma, T., 2022. How do Natural Processes and Human Activities Affect River Basin Water Resources? Earth Science, 47(10): 3813-3814 (in Chinese with English abstract).
|
Wu, Z. Z., Geng, T. Z., Wu, Z. W., et al., 2021. Water Quality Evaluation and Spatiotemporal Variation Characteristics of Qingyi River Basin. Journal of Anhui Agricultural Sciences, 49(18): 79-83, 86 (in Chinese with English abstract).
|
Xu, S., Li, S. L., Su, J., et al., 2021. Oxidation of Pyrite and Reducing Nitrogen Fertilizer Enhanced the Carbon Cycle by Driving Terrestrial Chemical Weathering. Science of the Total Environment, 768: 144343. https://doi.org/10.1016/j.scitotenv.2020.144343
|
Xu, Z. F., Liu, C. Q., 2010. Water Geochemistry of the Xijiang Basin Rivers, South China: Chemical Weathering and CO2 Consumption. Applied Geochemistry, 25(10): 1603-1614. https://doi.org/10.1016/j.apgeochem.2010.08.012
|
Xue, D. M., Botte, J., De Baets, B., et al., 2009. Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface- and Groundwater. Water Research, 43(5): 1159-1170. https://doi.org/10.1016/j.watres.2008.12.048
|
Yang, Q. Q., Xu, G. L., Zhang, P., et al., 2022. Macroinvertebrate Community Structure and Water Quality Assessment in the Qingyi River Watershed. Acta Ecologica Sinica, 42(10): 4169-4180 (in Chinese with English abstract).
|
Yu, C., Xu, Z. F., Liu, W. J., et al., 2017. River Water Geochemistry of Hanjiang River, Implications for Silicate Weathering and Sulfuric Acid Participation. Earth and Environment, 45(4): 390-398 (in Chinese with English abstract).
|
Zhang, C., 2018. Sedimentary Characteristics, Developmental Models and Distribution Regularities of the Triassic Spontaneous in Lower Yangtze Region of Anhui Province (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
|
Zhang, D., Qin, Y., Zhao, Z. Q., 2015. Chemical Weathering of Carbonate Rocks by Sulfuric Acid on Small Basin in North China. Acta Scientiae Circumstantiae, 35(11): 3568-3578 (in Chinese with English abstract).
|
Zhang, J., Cao, M. D., Jin, M. G., et al., 2022. Identifying the Source and Transformation of Riverine Nitrates in a Karst Watershed, North China: Comprehensive Use of Major Ions, Multiple Isotopes and a Bayesian Model. Journal of Contaminant Hydrology, 246: 103957. https://doi.org/10.1016/j.jconhyd.2022.103957
|
Zhang, L. X., 2019. Study on Surface Water Quality Characteristics and Water Quality Evaluation of Typical Watershed in Wanjiang Economic Belt (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract).
|
Zhang, S. R., Bai, X. Y., Zhao, C. W., et al., 2021. Global CO2 Consumption by Silicate Rock Chemical Weathering: Its Past and Future. Earth's Future, 9(5): 1-20. https://doi.org/10.1029/2020ef001938
|
安艳玲, 吕婕梅, 罗进, 等, 2018. 赤水河流域岩石化学风化及其对大气CO2的消耗. 地球科学进展, 33(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201802006.htm
|
白卢恒, 石万忠, 张晓明, 等, 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境. 地球科学, 46(6): 2204-2217. doi: 10.3799/dqkx.2020.372
|
胡春生, 田景梅, 何成邦, 等, 2021. 黄山北麓青弋江发育原因及其与长江贯通的关系. 地理科学, 41(10): 1862-1872. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202110018.htm
|
黄学文, 2019. 黄山北部景观流域硫酸盐来源与转化过程及其环境意义研究(硕士学位论文). 马鞍山: 安徽工业大学.
|
刘宝剑, 赵志琦, 李思亮, 等, 2013. 寒温带流域硅酸盐岩的风化特征——以嫩江为例. 生态学杂志, 32(4): 1006-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201304033.htm
|
吕婕梅, 2018. 人类活动影响下喀斯特小流域岩石风化及其与大气CO2的源汇效应关系研究(博士学位论文). 贵阳: 贵州大学.
|
覃小群, 蒋忠诚, 张连凯, 等, 2015. 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应. 地质通报, 34(9): 1749-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201509016.htm
|
仇晓龙, 王宝利, 梁重山, 等, 2019. 筑坝对河流水化学和流域风化速率估算的影响——以乌江支流三岔河、猫跳河为例. 地球与环境, 47(6): 768-776. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201906003.htm
|
石春娥, 邓学良, 杨元建, 等, 2015.1992-2013年安徽省酸雨变化特征及成因分析. 南京大学学报(自然科学), 51(3): 508-516. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503007.htm
|
石春娥, 邱明燕, 张爱民, 等, 2010. 安徽省酸雨分布特征和发展趋势及其影响因子. 环境科学, 31(6): 1675-1681. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201006049.htm
|
陶正华, 赵志琦, 张东, 等, 2015. 西南三江(金沙江、澜沧江和怒江)流域化学风化过程. 生态学杂志, 34(8): 2297-2308. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201508031.htm
|
王焰新, 马腾, 2022. 自然过程与人类活动如何影响流域水资源?. 地球科学, 47(10): 3813-3814. doi: 10.3799/dqkx.2022.821
|
吴转璋, 耿天召, 伍震威, 等, 2021. 青弋江流域水质评价及时空变化特征分析. 安徽农业科学, 49(18): 79-83, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202118021.htm
|
杨强强, 徐光来, 章翩, 等, 2022. 青弋江流域大型底栖动物群落结构及水质评价. 生态学报, 42(10): 4169-4180. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202210025.htm
|
余冲, 徐志方, 刘文景, 等, 2017. 韩江流域河水地球化学特征与硅酸盐岩风化——风化过程硫酸作用. 地球与环境, 45(4): 390-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201704002.htm
|
张弛, 2018. 安徽下扬子区中三叠统蒸发岩沉积特征、发育模式及分布规律(硕士学位论文). 南京: 南京大学.
|
张东, 秦勇, 赵志琦, 2015. 我国北方小流域硫酸参与碳酸盐矿物化学风化过程研究. 环境科学学报, 35(11): 3568-3578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201511021.htm
|
章凌曦, 2019. 皖江经济带地表水水质特征及典型流域水质评价研究(硕士学位论文). 合肥: 合肥工业大学.
|