Citation: | Chen Jianwei, Chen Guoxiong, Wang Detao, Xu Fuwen, 2023. Intelligent Seismic Stratigraphic Identification Based on BiX-NAS: A Case Study from the F3 Dataset in Netherlands Offshore Area. Earth Science, 48(8): 3162-3178. doi: 10.3799/dqkx.2023.014 |
Abdellatif, A., Elsheikh, A.H., Graham, G., et al., 2022. Generating Unrepresented Proportions of Geological Facies using Generative Adversarial Networks. Computers & Geosciences, 162: 105085. https://doi.org/10.1016/j.cageo.2022.105085
|
Araya-Polo, M., Jennings, J., Adler, A., et al., 2018. Deep-Learning Tomography. The Leading Edge, 37(1): 58-66. https://doi.org/10.1190/tle37010058.1
|
Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
|
Bahorich, M., Farmer, S., 1995. 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 14(10): 1053-1058. https://doi.org/10.1190/1.1437077
|
Cao, S., 2019. Application of Geostatistical Inversion Method in Reservoir Prediction of Coal Measure Strata in Hangjinqi Area. Petroleum Geology and engineering, 33(5): 41-44. (in Chinese with English abstract)
|
Ciresan, D., Giusti, A., Gambardella, L., et al., 2012. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. Advances in Neural Information Processing Systems, 25: 2843-2851.
|
Di, H., Wang, Z., Alregib, G., 2018. Deep Convolutional Neural Networks for Seismic Salt-Body Delineation. In: 2018 AAPG Annual Convention and Exhibition, Search and Discovery Article, 90323.
|
Donald, A. S., 2021. How Deep Learning Networks could be Designed to Locate Mineral Deposits. Journal of Earth Science, 32(2): 288-292. https://doi.org/10.1007/s12583-020-1399-2
|
Dorn, G.A., 1998. Modern 3-D Seismic Interpretation. The Leading Edge, 17(9): 1262-1262. https://doi.org/10.1190/1.1438121
|
Du, G., Cao, X., Liang, J., et al., 2020. Medical Image Segmentation Based on U-Net: A Review. Journal of Imaging Science and Technology, 64(2): 20508-1-20508-12. https://doi.org/10.2352/J.ImagingSci.Technol.2020.64.2.020508
|
Fan, Y., Huang, L., Dai, S., 1999. Application of Crossplot Technique to the Determination of Lithology Composition and Fracture Identification of Igneous Rock. Well Logging Technology, 23(1): 53-56(in Chinese with English abstract).
|
Gao, K., Huang, L., Zheng, Y., et al., 2022. Automatic Fault Detection on Seismic Images Using a Multiscale Attention Convolutional Neural Network. Geophysics, 87(1): N13-N29. https://doi.org/10.1190/geo2020-0945.1
|
Guo, Z., Zhang, X., Mu, H., et al., 2020. Single Path One-Shot Neural Architecture Search with Uniform Sampling. In: 2020 European Conference on Computer Vision(ECCV), Springer, Cham, 544-560.
|
He, K., Zhang, X., Ren, S., et al., 2016. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA, 770-778.
|
Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: 2015 International Conference on Machine Learning(ICML), PMLR, 448-456.
|
Jang, E., Gu, S., Poole, B., 2017. Categorical Reparameterization with Gumbel-Softmax. In: 2017 International Conference on Learning Representations(ICLR).
|
Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization. Computer Science, 14(6): 123-126. https://doi.org/10.48550/arXiv.1412.6980
|
Laloy, E., Hérault, R., Lee, J., et al., 2017. Inversion Using a New Low-Dimensional Representation of Complex Binary Geological Media Based on a Deep Neural Network. Advances in Water Resources, 110: 387-405. https://doi.org/10.1016/j.advwatres.2017.09.029
|
Laloy, E., Hérault, R., Jacques, D., et al., 2018. Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network. Water Resources Research, 54(1): 381-406. https://doi.org/10.1002/2017WR022148
|
Liu, H., Simonyan, K., Yang, Y., 2018. DARTS: Differentiable Architecture Search. In: 2018 International Conference on Learning Representations(ICLR).
|
Long, J., Shelhamer, E., Darrell, T., 2015. Fully Convolutional Networks for Semantic Segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 3431-3440.
|
Lopez-Alvis, J., Laloy, E., Nguyen, F., et al., 2021. Deep Generative Models in Inversion: a Review and Development of a New Approach Based on a Variational Autoencoder. Computers & Geosciences, 152: 104762. https://doi.org/10.1016/j.cageo.2021.104762
|
Ma, G., Wu, Q., Xiong, S., et al., 2021. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning. Earth Science, 46(9): 3365-3375. https://doi.org/10.3799/dqkx.2020.350 (in Chinese with English abstract)
|
Marfurt, K.J., Kirlin, R.L., Farmer, S.L., et al., 1998. 3-D Seismic Attributes Using a Semblance-Based Coherency Algorithm. Geophysics, 63(4): 1150-1165. https://doi.org/10.1190/1.1444415
|
Mosser, L., Dubrule, O., Blunt, M., 2018. Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks As A Geological Prior. Mathematical Geosciences, 52(1), 53-79. https://doi.org/10.3997/2214-4609.201803018
|
Nair, V., Hinton, G.E., 2010. Rectified Linear Units Improve Restricted Boltzmann Machines. In: 2010 International Conference on Machine Learning(ICML), Haifa, Israel, 807-814.
|
Qi, J., Lyu, B., Wu, X., et al., 2020. Comparing Convolutional Neural Networking and Image Processing Seismic Fault Detection Methods. In: 2020 SEG International Exposition and Annual Meeting. OnePetro, 1111-1115.
|
Real, E., Moore, S., Selle, A., et al., 2017. Large-Scale Evolution of Image Classifiers. In: 2017 International Conference on Machine Learning(ICML), PMLR, 2902-2911.
|
Real, E., Aggarwal, A., Huang, Y., et al., 2019. Regularized Evolution for Image Classifier Architecture Search. In: 2019 AAAI Conference on Artificial Intelligence 33: 4780-4789.
|
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, 9351: 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
|
Shi, Y., Wu, X., Fomel, S., 2019. SaltSeg: Automatic 3D Salt Segmentation Using a Deep Convolutional Neural Network. Interpretation, 7(3), SE113-SE122. https://doi.org/10.1190/int-2018-0235.1
|
Silva, R.M., Baroni, L., Ferreira, R.S., et al., 2019. Netherlands Dataset: A New Public Dataset for Machine Learning in Seismic Interpretation. arXiv preprint, 2019(6): 38-42. https://doi.org/10.48550/arXiv.1904.00770
|
Tao, H., Cheng, R., Zhao, X., et al., 2011. Well Logging Response to the Volcaniclastic Rocks of Hailar Basin and Application. Chinese Journal of geophysics, 54(2): 534-544. https://doi.org/10.3969/j.issn.0001-5733. 2011. 02.033(in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2011.02.033
|
Wang, D., Chen, G., 2021. Seismic Stratum Segmentation Using an Encoder-Decoder Convolutional Neural Network. Mathematical Geosciences, 53(6): 1355-1374. https://doi.org/10.1007/s11004-020-09916-8
|
Wang, X., Xiang, T., Zhang, C., et al., 2021. BiX-NAS: Searching Efficient Bi-Directional Architecture for Medical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, 229-238. https://doi.org/10.1007/978-3-030-87193-2_22
|
Wang, D., Chen, G., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506(in Chinese with English abstract).
|
Wu, X., Shi, Y., Fomel, S., et al., 2018. Convolutional Neural Networks for Fault Interpretation in Seismic Images. In: 2018 SEG International Exposition and Annual Meeting. OnePetro: Anaheim, California; 1946-1950.
|
Wu, H., Zhang, B., Lin, T., et al., 2019a. Semiautomated Seismic Horizon Interpretation Using the Encoder-Decoder Convolutional Neural Network. Geophysics, 84(6): B403-B417. https://doi.org/10.1190/geo2018-0672.1
|
Wu, X., Liang, L., Shi, Y., et al., 2019b. FaultSeg3D: Using Synthetic Data Sets to Train an End-to-End Convolutional Neural Network for 3D Seismic Fault Segmentation. Geophysics, 84: IM35-IM45. https://doi.org/10.1190/geo2018-0646.1
|
Wu, X., Liang, L., Shi, Y., et al., 2019c. Multitask Learning for Local Seismic Image Processing: Fault Detection, Structure-Oriented Smoothing with Edge-Preserving, and Seismic Normal Estimation by Using a Single Convolutional Neural Network. Geophysical Journal International, 219(3): 2097-2109. https://doi.org/10.1093/gji/ggz418
|
Xiang, T., Zhang, C., Liu, D., et al., 2020. BiO-Net: Learning Recurrent Bi-Directional Connections for Encoder-Decoder Architecture. Medical Image Computing and Computer: Assisted Intervention, 74-84. https://doi.org/10.1007/978-3-030-59710-8_8
|
Xue, W., Chen, B., Zhang, Z., 2019. Recognition of Stratigraphic Lithology by BP-Neural Network-A Case Study of Yiner Basin. Pretrochemical Technology, 26(11): 103-107.
|
Yang, F., Ma, J., 2019. Deep-Learning Inversion: a Next Generation Seismic Velocity-Model Building Method. Geophysics, 84(4): R583-R599. https://doi.org/10.1190/GEO2018-0249.1
|
Yang, D., Cai, Y., Hu, G., et al., 2020a. Seismic Fault Detection Based on 3D Unet++ Model. In: 2020 SEG International Exposition and Annual Meeting. OnePetro, 1631-1635.
|
Yang, Z., Wang, Y., Chen, X., et al. 2020b. CARS: Continuous Evolution for Efficient Neural Architecture Search. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 1829-1838.
|
Yu, S., Ma, J., 2021. Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3), e2021RG000742. https://doi.org/10.1029/2021RG000742
|
Zeng, Y., Jiang, K., Chen, J., 2018. Automatic Seismic Salt Interpretation with Deep Convolutional Neural Networks. In: 2019 International Conference on Information System and Data Mining, 16-20.
|
Zhang, H., Liu, Y., Zhang, Y., et al., 2019. Automatic Seismic Facies Interpretation Based on an Enhanced Encoder-Decoder Structure. In: 2019 SEG Technical Program Expanded Abstracts, 2408-2412.
|
Zhang, H., Chen, T., Liu, Y., et al., 2021. Automatic Seismic Facies Interpretation Using Supervised Deep Learning. Geophysics, 86(1): IM15-IM33. https://doi.org/10.1190/geo2019-0425.1
|
Zheng, Y., Li, G., 2009. Application of Support Vector Machine to Stratum Recognition. Journal of Henan Normal University(Natural Science), 37(2): 37-39(in Chinese with English abstract).
|
Zheng, Z.H., Kavousi, P., Di, H.B., 2014. Multi-Attributes and Neural Network-Based Fault Detection in 3D Seismic Interpretation. Advanced Materials Research, 838-841: 1497-1502. https://doi.org/10.4028/www.scientific.net/AMR.838-841.1497
|
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., et al., 2018. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In: 2018 Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 3-11.
|
曹绍贺, 2019. 地质统计学反演方法在杭锦旗区块煤系地层储层预测中的应用. 石油地质与工程, 33(5): 4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201905010.htm
|
范宜仁, 黄隆基, 代诗华, 1999. 交会图技术在火山岩岩性与裂缝识别中的应用. 测井技术, 23(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS901.012.htm
|
马国庆, 吴琪, 熊盛青, 等, 2021. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法. 地球科学, 46(9): 3365-3375. doi: 10.3799/dqkx.2020.350
|
陶宏根, 程日辉, 赵小青, 等, 2011. 海拉尔盆地火山碎屑岩的测井响应与应用. 地球物理学报, (2): 534-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201102035.htm
|
王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506. doi: 10.3799/dqkx.2021.070
|
薛文卓, 陈彪, 张哲豪, 2019. BP-神经网络识别地层岩性-以银额盆地为例. 石化技术, (11): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201911058.htm
|
郑延斌, 李国和, 2009. 支持向量机在地层识别中的应用. 河南师范大学学报(自然科学版), (2): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX200902011.htm
|