• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Yin Haolin, Huang Qian, Chen Yuchao, Zhao Jiannan, 2024. Morphological Identification and Clustering Analysis of Domes in the Lunar Large Volcanic Complexes. Earth Science, 49(3): 1104-1118. doi: 10.3799/dqkx.2023.016
    Citation: Yin Haolin, Huang Qian, Chen Yuchao, Zhao Jiannan, 2024. Morphological Identification and Clustering Analysis of Domes in the Lunar Large Volcanic Complexes. Earth Science, 49(3): 1104-1118. doi: 10.3799/dqkx.2023.016

    Morphological Identification and Clustering Analysis of Domes in the Lunar Large Volcanic Complexes

    doi: 10.3799/dqkx.2023.016
    • Received Date: 2022-11-28
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • Lunar volcanic domes are essential windows into the volcanic activities of the Moon. This study uses high-resolution multi-source remote sensing data to extract the morphological features and Fe-Ti contents of volcanic domes developed in the three large volcanic complexes (Marius Hills and Rümker Hills in the PKT region, and Gardner outside the PKT area) on the lunar nearside. Hierarchical clustering analysis is performed with these parameters and all domes are classified into seven dome clusters (DC1‒DC7). Comprehensive analyses of the rheology, chronology, and geological background of the three large volcanic complexes are carried out. Our results show that the Marius Hills developed a large number of volcanic domes with large height and slope, dominated by medium to high TiO2 contents, and the representative group of the domes is DC7. The geological age of the Marius Hills has a wide time span (~2.6 Ga), indicating a long-lasting volcanic activity in this region with multiple sources and phases. The volcanic domes developed in the Rümker Hills are small in number, moderate in height and slope, and dominated by low TiO2 contents. The representative groups of domes in this region are DC1 and DC4. Rümker Hills has a relatively concentrated geological time period (~0.8 Ga), but with multiple phases of volcanic activities. The domes developed in the Gardner and its surroundings are either radially or annularly distributed, with low height and slope, dominated by low to medium TiO2 contents, with magmatic activity lasting about 1.0 Ga. The representative group of the domes in the Gardner region is DC6, and multiple phases and complicated volcanic activities have occurred in this region. This study suggests the complexity of the magmatic activities of the lunar volcanic complexes, which may be related to different magma sources and the existence of heat-producing elements.

       

    • loading
    • Arya, A. S., Rajasekhar, R. P., Sur, K., et al., 2018. Morphometric and Rheological Study of Lunar Domes of Marius Hills Volcanic Complex Region Using Chandrayaan-1 and Recent Datasets. Journal of Earth System Science, 127(5): 70. https://doi.org/10.1007/s12040-018-0971-y
      Baratoux, D., Pinet, P., Toplis, M. J., et al., 2009. Shape, Rheology and Emplacement Times of Small Martian Shield Volcanoes. Journal of Volcanology and Geothermal Research, 185(1-2): 47-68. https://doi.org/10.1016/j.jvolgeores.2009.05.003
      Bohnenstiehl, D. R., Howell, J. K., White, S. M., et al., 2012. A Modified Basal Outlining Algorithm for Identifying Topographic Highs from Gridded Elevation Data, Part 1: Motivation and Methods. Computers & Geosciences, 49: 308-314. https://doi.org/10.1016/j.cageo.2012.04.023
      Chen, Y. C., Huang, Q., Zhao, J. N., et al., 2021. Unsupervised Machine Learning on Domes in the Lunar Gardner Region: Implications for Dome Classification and Local Magmatic Activities on the Moon. Remote Sensing, 13(5): 845. https://doi.org/10.3390/rs13050845
      Euillades, L. D., Grosse, P., Euillades, P. A., 2013. NETVOLC: An Algorithm for Automatic Delimitation of Volcano Edifice Boundaries Using DEMs. Computers & Geosciences, 56: 151-160. https://doi.org/10.1016/j.cageo.2013.03.011
      Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteoritics & Planetary Science, 35(1): 193-200. https://doi.org/10.1111/j.1945-5100.2000.tb01985.x
      Gillis, J. J., Jolliff, B. L., Elphic, R. C., 2003. A Revised Algorithm for Calculating TiO2 from Clementine UVVIS Data: A Synthesis of Rock, Soil, and Remotely Sensed TiO2 Concentrations. Journal of Geophysical Research: Planets, 108(E2): 5009. https://doi.org/10.1029/2001je001515
      Grosse, P., van Wyk de Vries, B., Euillades, P. A., et al., 2012. Systematic Morphometric Characterization of Volcanic Edifices Using Digital Elevation Models. Geomorphology, 136(1): 114-131. https://doi.org/10.1016/j.geomorph.2011.06.001
      Head, J. W., Gifford, A., 1980. Lunar Mare Domes: Classification and Modes of Origin. The Moon and the Planets, 22(2): 235-258. https://doi.org/10.1007/BF00898434
      Heather, D. J., Dunkin, S. K., Wilson, L., 2003. Volcanism on the Marius Hills Plateau: Observational Analyses Using Clementine Multispectral Data. Journal of Geophysical Research (Planets), 108(E3): 5017. https://doi.org/10.1029/2002JE001938
      Hiesinger, H., Gebhart, J., van der Bogert, C. H., et al., 2016. Stratigraphy of Low Shields and Mare Basalts of the Marius Hills Region, Moon. The 47th Lunar and Planetary Science Conference, Houston.
      Hiesinger, H., Jaumann, R., Neukum, G., et al., 2000. Ages of Mare Basalts on the Lunar Nearside. Journal of Geophysical Research: Planets, 105(E12): 29239-29275. https://doi.org/10.1029/2000je001244
      Huang, Q., Zhao, J. N., Wang, X. M., et al., 2020. A Large Long-Lived Central-Vent Volcano in the Gardner Region: Implications for the Volcanic History of the Nearside of the Moon. Earth and Planetary Science Letters, 542: 116301. https://doi.org/10.1016/j.epsl.2020.116301
      Lawrence, D. J., Feldman, W. C., Barraclough, B. L., et al., 1998. Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer. Science, 281(5382): 1484-1489. https://doi.org/10.1126/science.281.5382.1484
      Lawrence, D. J., Feldman, W. C., Elphic, R. C., et al., 2002. Iron Abundances on the Lunar Surface as Measured by the Lunar Prospector Gamma-Ray and Neutron Spectrometers. Journal of Geophysical Research (Planets), 107(E12): 5130. https://doi.org/10.1029/2001JE001530
      Lawrence, S. J., Stopar, J. D., Hawke, B. R., et al., 2013. LRO Observations of Morphology and Surface Roughness of Volcanic Cones and Lobate Lava Flows in the Marius Hills. Journal of Geophysical Research: Planets, 118(4): 615-634. https://doi.org/10.1002/jgre.20060
      Lena, R., Wöhler, C., Phillips, J., et al., 2013. Lunar Domes: Properties and Formation Processes. Springer & Praxis Publishing, Chichester.
      Li, Q. L., Zhou, Q., Liu, Y., et al., 2021. Two-Billion-Year-Old Volcanism on the Moon from Chang'E-5 Basalts. Nature, 600: 54-58. https://doi.org/10.1038/s41586-021-04100-2
      Lin, Y. T., 2010. Key Issues of the Formation and Evolution of the Moon. Geochimica, 39(1): 1-10 (in Chinese with English abstract).
      Liu, J. J., Li, C. L., Wang, W. R., et al., 2019. Extraction of Lunar Domes from Chang'E-2 Data with New Method. Icarus, 321: 29-33. https://doi.org/10.1016/j.icarus.2018.10.030
      Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. Journal of Geophysical Research: Planets, 105(E8): 20297-20305. https://doi.org/10.1029/1999je001117
      Morota, T., Haruyama, J., Ohtake, M., et al., 2011. Timing and Characteristics of the Latest Mare Eruption on the Moon. Earth and Planetary Science Letters, 302(3-4): 255-266. https://doi.org/10.1016/j.epsl.2010.12.028
      Podobnikar, T., 2012. Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures. Remote Sensing, 4(3): 784-809. https://doi.org/10.3390/rs4030784
      Qiao, L., Chen, J., Ling, Z. C., 2021. Volcanic Landforms on the Moon. Acta Geologica Sinica, 95(9): 2678-2691 (in Chinese with English abstract).
      Qiao, L., Head, J. W., Wilson, L., et al., 2021. Mare Domes in Mare Tranquillitatis: Identification, Characterization, and Implications for Their Origin. Journal of Geophysical Research (Planets), 126(9): e06888. https://doi.org/10.1029/2021JE006888
      Sato, H., Robinson, M. S., Lawrence, S. J., et al., 2017. Lunar Mare TiO2 Abundances Estimated from UV/Vis Reflectance. Icarus, 296: 216-238. https://doi.org/10.1016/j.icarus.2017.06.013
      Spudis, P. D., McGovern, P. J., Kiefer, W. S., 2013. Large Shield Volcanoes on the Moon. Journal of Geophysical Research: Planets, 118(5): 1063-1081. https://doi.org/10.1002/jgre.20059
      Tian, H. C., Wang, H., Chen, Y., et al., 2021. Non-KREEP Origin for Chang'E-5 Basalts in the Procellarum KREEP Terrane. Nature, 600: 59-63. https://doi.org/10.1038/s41586-021-04119-5
      Weitz, C. M., Head, J. W. Ⅲ, 1999. Spectral Properties of the Marius Hills Volcanic Complex and Implications for the Formation of Lunar Domes and Cones. Journal of Geophysical Research: Planets, 104(E8): 18933-18956. https://doi.org/10.1029/1998je000630
      Whitford-Stark, J. L., Head, J. W., 1977. The Procellarum Volcanic Complexes: Contrasting Styles of Volcanism. Lunar and Planetary Science Conference Proceedings, 3: 2705-2724.
      Wieczorek, M. A., Phillips, R. J., 2000. The "Procellarum KREEP Terrane": Implications for Mare Volcanism and Lunar Evolution. Journal of Geophysical Research: Planets, 105(E8): 20417-20430. https://doi.org/10.1029/1999je001092
      Wilson, L., Head, J. W., 2003. Lunar Gruithuisen and Mairan Domes: Rheology and Mode of Emplacement. Journal of Geophysical Research (Planets), 108(E2): 5012. https://doi.org/10.1029/2002JE001909
      Wöhler, C., Lena, R., 2009. Lunar Intrusive Domes: Morphometric Analysis and Laccolith Modelling. Icarus, 204(2): 381-398. https://doi.org/10.1016/j.icarus.2009.07.031
      Wöhler, C., Lena, R., Lazzarotti, P., et al., 2006. A Combined Spectrophotometric and Morphometric Study of the Lunar Mare Dome Fields near Cauchy, Arago, Hortensius, and Milichius. Icarus, 183(2): 237-264. https://doi.org/10.1016/j.icarus.2006.03.003
      Wöhler, C., Lena, R., Phillips, J., 2007. Formation of Lunar Mare Domes along Crustal Fractures: Rheologic Conditions, Dimensions of Feeder Dikes, and the Role of Magma Evolution. Icarus, 189(2): 279-307. https://doi.org/10.1016/j.icarus.2007.01.011
      Wood, C. A., Higgins, W., Pau, K. C., et al., 2005. The Lamont-Gardner Megadome Alignment: A Lunar Volcano-Tectonic Structure? The 36th Annual Lunar and Planetary Science Conference, League City.
      Xu, Y. G., 2010. Mare Basalts and Lunar Evolution. Geochimica, 39(1): 50-62 (in Chinese with English abstract).
      Yang, W., Hu, S., Li, Q. L., et al., 2022. How Long Has Lunar Volcanism Lasted? Earth Science, 47(10): 3789-3791 (in Chinese).
      Zhang, F., Zhu, M. H., Bugiolacchi, R., et al., 2018. Diversity of Basaltic Lunar Volcanism Associated with Buried Impact Structures: Implications for Intrusive and Extrusive Events. Icarus, 307: 216-234. https://doi.org/10.1016/j.icarus.2017.10.039
      Zhao, J. N., Xiao, L., Qiao, L., et al., 2017. The Mons Rümker Volcanic Complex of the Moon: A Candidate Landing Site for the Chang'E-5 Mission. Journal of Geophysical Research: Planets, 122(7): 1419-1442. https://doi.org/10.1002/2016je005247
      林杨挺, 2010. 月球形成和演化的关键科学问题. 地球化学, 39(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001004.htm
      乔乐, 陈剑, 凌宗成, 2021. 月球火山作用的地貌学特征. 地质学报, 95(9): 2678-2691. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202109005.htm
      徐义刚, 2010. 月海玄武岩与月球演化. 地球化学, 39(1): 50-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001010.htm
      杨蔚, 胡森, 李秋立, 等, 2022. 月球火山活动究竟能持续多久? 地球科学, 47(10): 3789-3791. doi: 10.3799/dqkx.2022.810
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (667) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return