• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 6
    Jun.  2023
    Turn off MathJax
    Article Contents
    Li Chunquan, Chen Honghan, Tang Daqing, Wang Zecheng, Jiang Hua, 2023. Strike-Slip Faults Controlled 'Floor Type' Hydrocarbon Accumulation Model in Gaoshiti-Moxi Area, Sichuan Basin: A Case Study of Sinian-Cambrian. Earth Science, 48(6): 2254-2266. doi: 10.3799/dqkx.2023.018
    Citation: Li Chunquan, Chen Honghan, Tang Daqing, Wang Zecheng, Jiang Hua, 2023. Strike-Slip Faults Controlled "Floor Type" Hydrocarbon Accumulation Model in Gaoshiti-Moxi Area, Sichuan Basin: A Case Study of Sinian-Cambrian. Earth Science, 48(6): 2254-2266. doi: 10.3799/dqkx.2023.018

    Strike-Slip Faults Controlled "Floor Type" Hydrocarbon Accumulation Model in Gaoshiti-Moxi Area, Sichuan Basin: A Case Study of Sinian-Cambrian

    doi: 10.3799/dqkx.2023.018
    • Received Date: 2022-09-01
    • Publish Date: 2023-06-25
    • Strike-slip faults play an important role in controlling hydrocarbon accumulation. In order to investigate the effect of strike-slip faults on the Sinian-Cambrian hydrocarbon accumulation in the Gaoshiti-Moxi area of Sichuan basin, seismic interpretation of strike-slip faults and systematic fluid inclusion analysis of diagenetic minerals filled in solution vugs were carried out, and the active stages of strike-slip faults and the hydrocarbon accumulation orders were determined. Moreover, the coupling relationship between strike-slip fault active stages and the hydrocarbon accumulation orders were discussed, and established a "floor type" hydrocarbon accumulation model controlled by strike-slip fault. Under this model, there are multiple sets of high-quality reservoirs developed vertically, which are shown as multi-layer systems containing oil and gas, and the oil and gas accumulation characteristics of each layer system are highly similar. For the areas where there is a "floor type" oil and gas accumulation mode, attention should be paid to three-dimensional exploration.

       

    • loading
    • Curren, I. S., Bird, P., 2014. Formation and Suppression of Strike-Slip Fault Systems. Pure and Applied Geophysics, 171(11): 2899-2918. https://doi.org/10.1007/s00024-014-0826-7
      de Joussineau, G., Aydin, A., 2009. Segmentation along Strike-Slip Faults Revisited. Pure and Applied Geophysics, 166(10): 1575-1594. https://doi.org/10.1007/s00024-009-0511-4
      Deng, S., Liu, Y. Q., Liu, J., et al., 2021. Structural Styles and Evolution Models of Intracratonic Strike-Slip Faults and the Implications for Reservoir Exploration and Appraisal: A Case Study of the Shunbei Area, Tarim Basin. Geotectonica et Metallogenia, 45(6): 1111-1126(in Chinese with English abstract).
      Deng, S., Zhao, R., Kong, Q. F., et al., 2022. Two Distinct Strike-Slip Fault Networks in the Shunbei Area and Its Surroundings, Tarim Basin: Hydrocarbon Accumulation, Distribution, and Controlling Factors. AAPG Bulletin, 106(1): 77-102. https://doi.org/10.1306/07202119113
      Duan, J. B., Mei, Q. H., Li, B. S., et al., 2019. Sinian-Early Cambrian Tectonic-Sedimentary Evolution in Sichuan Basin. Earth Science, 44(3): 738-755(in Chinese with English abstract).
      Gao, D., Hu, M. Y., Li, A. P., et al., 2021. High-Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin. Earth Science, 46(10): 3520-3534(in Chinese with English abstract).
      Ge, X. H., Ren, S. M., Liu, Y. J., et al., 2006. Restoration of the Large-Scale Strike-Slip Faults and Prediction of Related Oil and Gas Exploration Strategic Target Area in China. Geological Bulletin of China, 25(9): 1022-1027(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2006.09.005
      Gogonenkov, G. N., Timurziev, A. I., 2010. Strike-Slip Faults in the West Siberian Basin: Implications for Petroleum Exploration and Development. Russian Geology and Geophysics, 51(3): 304-316. https://doi.org/10.1016/j.rgg.2010.02.007
      Guan, S. W., Jiang, H., Lu, X. S., et al., 2022. Strike-Slip Fault System and Its Control on Oil & Gas Accumulation in Central Sichuan Basin. Acta Petrolei Sinica, 43(11): 1542-1557(in Chinese with English abstract).
      Han, J. F., Su, Z., Chen, L. X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310(in Chinese with English abstract). doi: 10.7623/syxb201911002
      Hao, B., Zhao, W. Z., Hu, S. Y., et al., 2017. Bitumen Genesis and Hydrocarbon Accumulation History of the Cambrian Longwangmiao Formation in Central Sichuan Basin. Acta Petrolei Sinica, 38(8): 863-875(in Chinese with English abstract).
      He, D. F., Li, D. S., Zhang, G. W., et al., 2011. Formation and Evolution of Multi-Cycle Superposed Sichuan Basin, China. Chinese Journal of Geology, 46(3): 589-606(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2011.03.001
      Jia, C. Z., Ma, D. B., Yuan, J. Y., et al., 2021. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strike-Slip Faults in the Tarim Basin. Natural Gas Industry, 41(8): 81-91(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.008
      Jiao, F. Z., Yang, Y., Ran, Q., et al., 2021. Distribution and Gas Exploration of the Strike-Slip Faults in the Central Sichuan Basin. Natural Gas Industry, 41(8): 92-101(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.009
      Li, C. Q., Chen, H. H., Liu, H. M., 2022. Fluid Inclusion Constrained Multiple Petroleum Chargings in the Lithologic Reservoirs of the Late Eocene Shahejie Formation in the Minfeng Sag, Bohai Bay Basin, East China. Energies, 15(10): 3682. https://doi.org/10.3390/en15103682
      Li, C. Q., Chen, H. H., Xiao, X. W., et al., 2022. Raman Spectroscopy of Bitumen from the Sinian Dengying Formation Reservoirs, Gaoshiti-Moxi Area, Central Sichuan Basin. Oil & Gas Geology, 43(2): 456-466(in Chinese with English abstract).
      Li, H. K., Li, Z. Q., Long, W., et al., 2019. Vertical Configuration of Sichuan Basin and Its Superimposed Characteristics of the Prototype Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 46(3): 257-267(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2019.03.01
      Luo, C. M., Liang, X. X., Huang, S. Y., et al., 2022. Three-Layer Structure Model of Strike-Slip Faults in the Tazhong Uplift and Its Formation Mechanism. Oil & Gas Geology, 43(1): 118-131, 148(in Chinese with English abstract). doi: 10.3969/j.issn.1007-3426.2022.01.019
      Ma, D. B., Wang, Z. C., Duan, S. F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      Molchanov, A. E., 2000. Deformation Characteristics of Strike-Slip Fault Zones. Izvestiya-Physics of the Solid Earth, 36(11): 931-945.
      Qiu, Z. H., Zhou, L., Chen, X., et al., 2022. Identification of Strike-Slip Faults in Gaoshiti-Moxi Area of Sichuan Basin. Oil Geophysical Prospecting, 57(3): 647-655, 494(in Chinese with English abstract).
      Rotevatn, A., Peacock, D. C. P., 2018. Strike-Slip Reactivation of Segmented Normal Faults: Implications for Basin Structure and Fluid Flow. Basin Research, 30(6): 1264-1279. https://doi.org/10.1111/bre.12303
      Shi, S. Y., Hu, S. Y., Wang, Z. C., et al., 2022. Characteristics and Exploration Prospect of Dolograinstone Beach Reservoir in Xixiangchi Formation, Cambrian, Sichuan Basin. Petroleum Geology & Experiment, 44(3): 433-447, 475(in Chinese with English abstract).
      Su, J., Wang, X. M., Yang, H. J., et al., 2021. Hydrothermal Alteration and Hydrocarbon Accumulations in Ultra-Deep Carbonate Reservoirs along a Strike-Slip Fault System, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 203: 108605. https://doi.org/10.1016/j.petrol.2021.108605
      Su, N., Yang, W., Yuan, B. G., et al., 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378(in Chinese with English abstract).
      Sylvester, A. G., 1988. Strike-Slip Faults. Geological Society of America Bulletin, 100(11): 1666-1703. https://doi.org/10.1130/0016-7606(1988)1001666:ssf>2.3.co;2 doi: 10.1130/0016-7606(1988)1001666:ssf>2.3.co;2
      Timurziev, A. I., 2009. A New Kinematic Model of Strike-Slip Faults. Doklady Earth Sciences, 428(1): 1237-1240. https://doi.org/10.1134/s1028334x09070435
      Wang, R. J., Wang, X., Deng, X. L., et al., 2021. Control Effect of Strike-Slip Faults on Carbonate Reservoirs and Hydrocarbon Accumulation: A Case Study of the Northern Depression in the Tarim Basin. Natural Gas Industry, 41(3): 10-20(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.03.002
      Wang, Y., Zhang, S. N., Liu, Y. L., 2022. Controls of Strike-Slip Fault Activities on Hydrocarbon Accumulation in Tahe Oilfield, Tarim Basin: A Case Study of TP 39 Fault Zone. Petroleum Geology & Experiment, 44(3): 394-401(in Chinese with English abstract).
      Wang, Z. C., Jiang, H., Wang, T. S., et al., 2014. Paleo-Geomorphology Formed during Tongwan Tectonization in Sichuan Basin and Its Significance for Hydrocarbon Accumulation. Petroleum Exploration and Development, 41(3): 305-312(in Chinese with English abstract).
      Wang, Z. C., Wang, T. S., Wen, L., et al., 2016. Basic Geological Characteristics and Accumulation Conditions of Anyue Giant Gas Field, Sichuan Basin. China Offshore Oil and Gas, 28(2): 45-52(in Chinese with English abstract).
      Wei, G. Q., Yang, W., Du J. H., et al., 2015. Tectonic Features of Gaoshiti-Moxi Paleo-Uplift and Its Controls on the Formation of a Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 42(3): 257-265(in Chinese with English abstract). doi: 10.11698/PED.2015.03.01
      Wei, G. Q., Yang, W., Xie, W. R., et al., 2018. Accumulation Modes and Exploration Domains of Sinian-Cambrian Natural Gas in Sichuan Basin. Acta Petrolei Sinica, 39(12): 1317-1327(in Chinese with English abstract). doi: 10.7623/syxb201812001
      Xu, C. G., Jia, D. H., Wan, L. W., 2017. Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area. Earth Science, 42(11): 1871-1882(in Chinese with English abstract).
      Xu, Z. Q., Zeng, L. S., Yang, J. S., et al., 2004. Role of Large-Scale Strike-Slip Faults in the Formation of Petroleum-Bearing Compressional Basin-Mountain Range Systems. Earth Science, 29(6): 631-643(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.06.001
      Xu, Z. X., Ma, Q. Y., 2022. Zonal Differential Deformation and Reservoir Control Model of Ordovician Strike-Slip Fault Zone in Tahe Oilfield. Marine Origin Petroleum Geology, 27(2): 124-134(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2022.02.002
      Yang, P., Ding, B. Z., Fan, C., et al., 2017. Distribution Pattern and Origin of the Columnar Pull-Down Anomalies in Gaoshiti Block of Central Sichuan Basin, SW China. Petroleum Exploration and Development, 44(3): 370-379(in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhang, X., Ran, Q., Chen, K., et al., 2022. The Controlling Effect of Strike-Slip Fault on Dengying Formation Reservoir and Gas Enrichment in Anyue Gas Field in Central Sichuan Basin. Natural Gas Geoscience, 33(6): 917-928(in Chinese with English abstract).
      Zou, C. N., Du, J. H., Xu, C. C., et al., 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293(in Chinese with English abstract).
      邓尚, 刘雨晴, 刘军, 等, 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm
      段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪-早寒武世构造-沉积演化过程. 地球科学, 44(3): 738-755. doi: 10.3799/dqkx.2018.335
      高达, 胡明毅, 李安鹏, 等, 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制. 地球科学, 46(10): 3520-3534. doi: 10.3799/dqkx.2020.382
      葛肖虹, 任收麦, 刘永江, 等, 2006. 中国大型走滑断裂的复位研究与油气资源战略选区预测. 地质通报, 25(9): 1022-1027. doi: 10.3969/j.issn.1671-2552.2006.09.005
      管树巍, 姜华, 鲁雪松, 等, 2022. 四川盆地中部走滑断裂系统及其控油气作用. 石油学报, 43(11): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202211002.htm
      韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. doi: 10.7623/syxb201911002
      郝彬, 赵文智, 胡素云, 等, 2017. 川中地区寒武系龙王庙组沥青成因与油气成藏史. 石油学报, 38(8): 863-875. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708002.htm
      何登发, 李德生, 张国伟, 等, 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001
      贾承造, 马德波, 袁敬一, 等, 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制. 天然气工业, 41(8): 81-91. doi: 10.3787/j.issn.1000-0976.2021.08.008
      焦方正, 杨雨, 冉崎, 等, 2021. 四川盆地中部地区走滑断层的分布与天然气勘探. 天然气工业, 41(8): 92-101. doi: 10.3787/j.issn.1000-0976.2021.08.009
      李纯泉, 陈红汉, 肖雪薇, 等, 2022. 四川盆地中部高石梯-磨溪地区震旦系灯影组储层沥青拉曼光谱分析. 石油与天然气地质, 43(2): 456-466. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202017.htm
      李洪奎, 李忠权, 龙伟, 等, 2019. 四川盆地纵向结构及原型盆地叠合特征. 成都理工大学学报(自然科学版), 46(3): 257-267. doi: 10.3969/j.issn.1671-9727.2019.03.01
      罗彩明, 梁鑫鑫, 黄少英, 等, 2022. 塔里木盆地塔中隆起走滑断裂的三层结构模型及其形成机制. 石油与天然气地质, 43(1): 118-131, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201009.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      邱泽华, 周路, 陈骁, 等, 2022. 四川盆地高石梯-磨溪地区走滑断层识别. 石油地球物理勘探, 57(3): 647-655, 494. doi: 10.13810/j.cnki.issn.1000-7210.2022.03.015
      石书缘, 胡素云, 汪泽成, 等, 2022. 四川盆地寒武系洗象池组滩相白云岩规模储层发育特征及勘探意义. 石油实验地质, 44(3): 433-447, 475. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203007.htm
      苏楠, 杨威, 苑保国, 等, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
      汪如军, 王轩, 邓兴梁, 等, 2021. 走滑断裂对碳酸盐岩储层和油气藏的控制作用: 以塔里木盆地北部坳陷为例. 天然气工业, 41(3): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103003.htm
      汪洋, 张哨楠, 刘永立, 2022. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例. 石油实验地质, 44(3): 394-401. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203003.htm
      汪泽成, 姜华, 王铜山, 等, 2014. 四川盆地桐湾期古地貌特征及成藏意义. 石油勘探与开发, 41(3): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403008.htm
      汪泽成, 王铜山, 文龙, 等, 2016. 四川盆地安岳特大型气田基本地质特征与形成条件. 中国海上油气, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htm
      魏国齐, 杨威, 杜金虎, 等, 2015. 四川盆地高石梯—磨溪古隆起构造特征及对特大型气田形成的控制作用. 石油勘探与开发, 42(3): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201503002.htm
      魏国齐, 杨威, 谢武仁, 等, 2018. 四川盆地震旦系—寒武系天然气成藏模式与勘探领域. 石油学报, 39(12): 1317-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812001.htm
      徐长贵, 加东辉, 宛良伟, 2017. 渤海走滑断裂对古近系源—汇体系的控制作用. 地球科学, 42(11): 1871-1882. doi: 10.3799/dqkx.2017.118
      许志琴, 曾令森, 杨经绥, 等, 2004. 走滑断裂、"挤压性盆-山构造" 与油气资源关系的探讨. 地球科学, 29(6): 631-643. http://www.earth-science.net/article/id/1464
      徐中祥, 马庆佑, 2022. 塔河油田奥陶系走滑断裂带分区差异变形特征与控储模式. 海相油气地质, 27(2): 124-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202202002.htm
      杨平, 丁博钊, 范畅, 等, 2017. 四川盆地中部高石梯地区柱状下拉异常体分布特征及成因. 石油勘探与开发, 44(3): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703007.htm
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
      张旋, 冉崎, 陈康, 等, 2022. 川中地区安岳气田走滑断裂对灯影组储层及含气富集的控制作用. 天然气地球科学, 33(6): 917-928. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202206006.htm
      邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (673) PDF downloads(160) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return