• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 4
    Apr.  2023
    Turn off MathJax
    Article Contents
    Wang Jinhan, Shi Xuhua, Chen Hanlin, Yang Rong, Zhang Fengqi, Cheng Xiaogan, Rao Gang, Deng Hongdan, Gong Junfeng, Shu Yuanhai, Bai Zhuona, 2023. V-Shaped Conjugate Strike-Slip Faults: Characteristics, Formation Mechanisms and Implications for the Late Cenozoic Deformation in the Southeastern Tibetan Plateau. Earth Science, 48(4): 1421-1440. doi: 10.3799/dqkx.2023.019
    Citation: Wang Jinhan, Shi Xuhua, Chen Hanlin, Yang Rong, Zhang Fengqi, Cheng Xiaogan, Rao Gang, Deng Hongdan, Gong Junfeng, Shu Yuanhai, Bai Zhuona, 2023. V-Shaped Conjugate Strike-Slip Faults: Characteristics, Formation Mechanisms and Implications for the Late Cenozoic Deformation in the Southeastern Tibetan Plateau. Earth Science, 48(4): 1421-1440. doi: 10.3799/dqkx.2023.019

    V-Shaped Conjugate Strike-Slip Faults: Characteristics, Formation Mechanisms and Implications for the Late Cenozoic Deformation in the Southeastern Tibetan Plateau

    doi: 10.3799/dqkx.2023.019
    • Received Date: 2022-11-29
    • Publish Date: 2023-04-25
    • The V-shaped conjugate strike-slip fault system is defined as strike-slip faults with obtuse conjugate angles, whose opening side has an acute angle between the V-shaped faults, pointing to the direction of maximum extension. Previous studies on V-shaped conjugate strike-slip faults mostly focused on their development background and associated dynamic mechanisms. However, few literatures exist to comprehensively review the geometry and kinematics of V-shaped conjugate strike-slip faults. Here, we firstly summarize previous findings on the geometry, kinematic characteristics and formation mechanisms of existing V-shaped conjugate strike-slip faults, and then select the V-shaped conjugate strike-slip faults in the southeastern Tibetan Plateau for a case analysis. The characteristics of V-shaped conjugate strike-slip faults in the western United States, central and western Eurasian plate and central Tibet show a negative relation among conjugate angles and corresponding fault slip rates and fault lengths. The four formation mechanisms of the V-shaped conjugate strike-slip faults are 1) the fault planes experienced rotation after their formation, 2) the faults were reactivated along preexisting structurally weak zones, 3) the faults followed the paired general shear model and 4) the fault evolved according to the maximum-effective-moment criterion. Integrating analyses of geophysical data, elevation difference and geometric characteristics, we infer that the development of V-shaped conjugate strike-slip faults (Batang-Litang and Derong-Xiangcheng faults) in the Chuan-Dian block in the southeastern Tibetan Plateau, is consistent with gravitational spreading of the Tibetan lithosphere under the paired general shear model. This provides important insights for understanding the continuum crustal deformation in the southeastern Tibetan Plateau.

       

    • loading
    • Aktug, B., Ozener, H., Dogru, A., et al., 2016. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics, 94/95: 1-12. https://doi.org/10.1016/j.jog.2016.01.001
      Ambraseys, N. N., 1970. Some Characteristic Features of the Anatolian Fault Zone. Tectonophysics, 9(2/3): 143-165. https://doi.org/10.1016/0040-1951(70)90014-4
      Anderson, T. B., 1964. Kink-Bands and Related Geological Structures. Nature, 202(4929): 272-274. https://doi.org/10.1038/202272a0
      Andrew, J. E., Walker, J. D., Monastero, F. C., 2015. Evolution of the Central Garlock Fault Zone, California: A Major Sinistral Fault Embedded in a Dextral Plate Margin. Geological Society of America Bulletin, 127(1-2): 227-249. https://doi.org/10.1130/b31027.1
      Arpat, E., Şaroglu, F., 1972. The East Anatolian Fault System: Thoughts on Its Development. Bulletin of the Mineral Research Exploration, 78(78): 1-12.
      Barka, A. A., Hancock, P. L., 1984. Neotectonic Deformation Patterns in the Convex-Northwards Arc of the North Anatolian Fault Zone. Geological Society, London, Special Publications, 17(1): 763-774. https://doi.org/10.1144/gsl.sp.1984.017.01.61
      Barka, A. A., Kadinsky-Cade, K., 1988. Strike-Slip Fault Geometry in Turkey and Its Influence on Earthquake Activity. Tectonics, 7(3): 663-684. https://doi.org/10.1029/TC007i003p00663
      Bian, S., Gong, J., Zuza, A. V., et al., 2020. Late Pliocene Onset of the Cona Rift, Eastern Himalaya, Confirms Eastward Propagation of Extension in Himalayan-Tibetan Orogen. Earth and Planetary Science Letters, 544: 116383. https://doi.org/10.1016/j.epsl.2020.116383
      Boyd, O. S., Mueller, C. S., Rukstales, K. S., 2007. Preliminary Earthquake Hazard Map of Afghanistan. US Geological Survey Open-File Report, 1137.
      Burbank, D. W., Whistler, D. P., 1987. Temporally Constrained Tectonic Rotations Derived from Magnetostratigiraphic Data: Implications for the Initiation of the Garlock Fault, California. Geology, 15(12): 1172. https://doi.org/10.1130/0091-7613(1987)151172:tctrdf>2.0.co;2 doi: 10.1130/0091-7613(1987)151172:tctrdf>2.0.co;2
      Byerlee, J., 1978. Friction of Rocks. Pure and Applied Geophysics PAGEOPH, 116(4-5): 615-626. https://doi.org/10.1007/bf00876528
      Catchings, R. D., 2002. High-Resolution Seismic Velocities and Shallow Structure of the San Andreas Fault Zone at Middle Mountain, Parkfield, California. Bulletin of the Seismological Society of America, 92(6): 2493-2503. https://doi.org/10.1785/0120010263
      Cetin, H., Güneyli, H., Mayer, L., 2003. Paleoseismology of the Palu-Lake Hazar Segment of the East Anatolian Fault Zone, Turkey. Tectonophysics, 374(3/4): 163-197. https://doi.org/10.1016/j.tecto.2003.08.003
      Chen, G. F., Bartholomew, M., Liu, D. M., et al., 2022. Paleo-Earthquakes along the Zheduotang Fault, Xianshuihe Fault System, Eastern Tibet: Implications for Seismic Hazard Evaluation. Journal of Earth Science, 33(5): 1233-1245. https://doi.org/10.1007/s12583-022-1687-0
      Chen, M., Huang, H., Yao, H., et al., 2014. Low Wave Speed Zones in the Crust beneath SE Tibet Revealed by Ambient Noise Adjoint Tomography. Geophysical Research Letters, 41(2): 334-340. https://doi.org/10.1002/2013gl058476
      Chevalier, M. L., Leloup, P. H., Replumaz, A., et al., 2016. Tectonic-Geomorphology of the Litang Fault System, SE Tibetan Plateau, and Implication for Regional Seismic Hazard. Tectonophysics, 682: 278-292. https://doi.org/10.1016/j.tecto.2016.05.039
      Chorowicz, J., Dhont, D., Gündoğdu, N., 1999. Neotectonics in the Eastern North Anatolian Fault Region (Turkey) Advocates Crustal Extension: Mapping from SARERS Imagery and Digital Elevation Model. Journal of Structural Geology, 21(5): 511-532. https://doi.org/10.1016/S0191-8141(99)00022-X
      Clark, M. K., House, M. A., Royden, L. H., et al., 2005. Late Cenozoic Uplift of Southeastern Tibet. Geology, 33(6): 525. https://doi.org/10.1130/g21265.1
      Cloos, E., 1955. Experimental Analysis of Fracture Patterns. Geological Society of America Bulletin, 66(3): 241. https://doi.org/10.1130/0016-7606(1955)66[241:eaofp]2.0.co;2
      Cooke, M. L., Dair, L. C., 2011. Simulating the Recent Evolution of the Southern Big Bend of the San Andreas Fault, Southern California. Journal of Geophysical Research: Solid Earth, 116(B4): B04405. https://doi.org/10.1029/2010JB007835
      Crane, T.M., 2014. Qualitative Comparison of Offset Surfaces between the Central and Eastern Garlock Fault. Electronic Theses, Projects, and Dissertations, 119.
      Davis, G. A., Burchfiel, B. C., 1973. Garlock Fault: An Intracontinental Transform Structure, Southern California. Geological Society of America Bulletin, 84(4): 1407. https://doi.org/10.1130/0016-7606(1973)841407:gfaits>2.0.co;2 doi: 10.1130/0016-7606(1973)841407:gfaits>2.0.co;2
      Dawson, T. E., McGill, S. F., Rockwell, T. K., 2003. Irregular Recurrence of Paleoearthquakes along the Central Garlock Fault near El Paso Peaks, California. Journal of Geophysical Research: Solid Earth, 108(B7): 2356. https://doi.org/10.1029/2001JB001744
      Dickinson, W. R., Wernicke, B. P., 1997. Reconciliation of San Andreas Slip Discrepancy by a Combination of Interior Basin and Range Extension and Transrotation near the Coast. Geology, 25(7): 663. https://doi.org/10.1130/0091-7613(1997)0250663:rosasd>2.3.co;2 doi: 10.1130/0091-7613(1997)0250663:rosasd>2.3.co;2
      Dixon, T. H., Xie, S., 2018. A Kinematic Model for the Evolution of the Eastern California Shear Zone and Garlock Fault, Mojave Desert, California. Earth and Planetary Science Letters, 494: 60-68. https://doi.org/10.1016/j.epsl.2018.04.050
      Dolan, J. F., McAuliffe, L. J., Rhodes, E. J., et al., 2016. Extreme Multi-Millennial Slip Rate Variations on the Garlock Fault, California: Strain Super-Cycles, Potentially Time-Variable Fault Strength, and Implications for System-Level Earthquake Occurrence. Earth and Planetary Science Letters, 446: 123-136. https://doi.org/10.1016/j.epsl.2016.04.011
      DuRoss, C.B., Gold, R.D., Dawson, T.E., et al., 2020. Surface Displacement Distributions for the July 2019 Ridgecrest, California, Earthquake Ruptures. Bulletin of the Seismological Society of America, 110(4): 1400-1418. https://doi.org/10.1785/0120200058
      Fialko, Y., 2006. Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System. Nature, 441(7096): 968-971. https://doi.org/10.1038/nature04797
      Fialko, Y., Jin, Z. Y., 2021. Simple Shear Origin of the Cross-Faults Ruptured in the 2019 Ridgecrest Earthquake Sequence. Nature Geoscience, 14(7): 513-518. https://doi.org/10.1038/s41561-021-00758-5
      Fossen, H., 2016. Structural Geology. Cambridge University Press, Cambridge.
      Freund, R., 1970. Rotation of Strike Slip Faults in Sistan, Southeast Iran. The Journal of Geology, 78(2): 188-200. https://doi.org/10.1086/627500
      Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. https://doi.org/10.1029/2005jb004120
      Ganev, P. N., Dolan, J. F., McGill, S. F., et al., 2012. Constancy of Geologic Slip Rate along the Central Garlock Fault: Implications for Strain Accumulation and Release in Southern California. Geophysical Journal International, 190(2): 745-760. https://doi.org/10.1111/j.1365-246X.2012.05494.x
      Garthwaite, M. C., Wang, H., Wright, T. J., 2013. Broadscale Interseismic Deformation and Fault Slip Rates in the Central Tibetan Plateau Observed Using InSAR. Journal of Geophysical Research: Solid Earth, 118(9): 5071-5083. https://doi.org/10.1002/jgrb.50348
      George, I. S., 1962. Large Lateral Displacement on Garlock Fault, Califonia, as Measured from Offset Dike Swarm. AAPG Bulletin, 46. https://doi.org/10.1306/bc74375f-16be-11d7-8645000102c1865d
      Gómez-Rivas, E., Carreras, J., 2008. Localization of Deformation in Ductile and Anisotropic Media: Field, Experimental and Numerical Study (Dissertation). Autonomous University of Barcelona, Spain.
      Hatem, A. E., Dolan, J. F., 2018. A Model for the Initiation, Evolution, and Controls on Seismic Behavior of the Garlock Fault, California. Geochemistry, Geophysics, Geosystems, 19(7): 2166-2178. https://doi.org/10.1029/2017GC007349
      He, X., Zhao, L. F., Xie, X. B., et al., 2021. Weak Crust in Southeast Tibetan Plateau Revealed by Lg-Wave Attenuation Tomography: Implications for Crustal Material Escape. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020748. https://doi.org/10.1029/2020JB020748
      Hill, M. L., Dibblee, T. W., 1953. San Andreas, Garlock, and Big Pine Faults, California. Geological Society of America Bulletin, 64(4): 443. https://doi.org/10.1130/0016-7606(1953)64[443:sagabp]2.0.co;2
      Hollingsworth, J., Wernicke, B. P., Ding, L., 2010. Fault Slip-Rate Estimate for the Right-Lateral Beng Co Strike-Slip Fault, Based on Quaternary Dating of Displaced Paleo-Lake Shorelines. AGU Fall Meeting Abstracts.
      Hubert-Ferrari, A., Armijo, R., King, G., et al., 2002. Morphology, Displacement, and Slip Rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth, 107(B10): ETG9-1. https://doi.org/10.1029/2001jb000393
      Jaeger, J. C., Cook, N., 1979. Fundamentalsof Rock Mechanics. Third Edition. Science Paperbacks, 9(3): 251-252.
      Ketin, İ., 1969. Kuzey Anadolu Fayi Hakkinda(On the North Anatolian Fault). MTA Dergisi, 72: 1-27.
      Khalifa, A., Çakir, Z., Owen, L., et al., 2018. Morphotectonic Analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27(2): 110. https://doi.org/10.3906/yer-1707-16
      Köküm, M., İnceöz, M., 2018. Structural Analysis of the Northern Part of the East Anatolian Fault System. Journal of Structural Geology, 114: 55-63. https://doi.org/10.1016/j.jsg.2018.06.016
      Kozacı, Ö., Dolan, J. F., Finkel, R. C., 2009. A Late Holocene Slip Rate for the Central North Anatolian Fault, at Tahtaköprü, Turkey, from Cosmogenic 10Be Geochronology: Implications for Fault Loading and Strain Release Rates. Journal of Geophysical Research: Solid Earth, 114(B1): B01405. https://doi.org/10.1029/2008JB005760
      Kurz, G. A., Northrup, C. J., 2008. Structural Analysis of Mylonitic Rocks in the Cougar Creek Complex, Oregon-Idaho Using the Porphyroclast Hyperbolic Distribution Method, and Potential Use of SC'-Type Extensional Shear Bands as Quantitative Vorticity Indicators. Journal of Structural Geology, 30(8): 1005-1012. https://doi.org/10.1016/j.jsg.2008.04.003
      Lawrence, R.D., Khan, S.H., Nakata, T., 1992. Chaman Fault, Pakistan-Afghanistan. Ann. Tectonicae, 6, 196-223.
      Leedal, G. P., Walker, G. P. L., 1954. Tear Faults in the Barnesmore Area, Donegal. Geological Magazine, 91(2): 116-120. https://doi.org/10.1017/s0016756800064980
      Li, H.B., Yang, J.S., Xu, Z.Q., et al., 2006. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau. Earth Science Frontiers, 13(4): 59-79 (in Chinese with English abstract).
      Li, K., Tapponnier, P., Xu, X. W., et al., 2022. Holocene Slip Rate along the Beng Co Fault and Dextral Strike-Slip Extrusion of Central Eastern Tibet. Tectonics, 41(8): e2022TC007230. https://doi.org/10.1029/2022TC007230
      Li, Y. S., Tian, Y. F., Yu, C., et al., 2020. Present-Day Interseismic Deformation Characteristics of the Beng Co-Dongqiao Conjugate Fault System in Central Tibet: Implications from InSAR Observations. Geophysical Journal International, 221(1): 492-503. https://doi.org/10.1093/gji/ggaa014
      Liang, C., Ampuero, J. P., Pino Muñoz, D., 2021. Deep Ductile Shear Zone Facilitates Near-Orthogonal Strike-Slip Faulting in a Thin Brittle Lithosphere. Geophysical Research Letters, 48(2): e2020GL090744. https://doi.org/10.1029/2020GL090744
      Liu, F.C., Pan, J.W., Li, H.B., et al., 2022. Characteristics of Quaternary Activities along the Piganpei Co Fault and Seismogenic Structure of the July 23, 2020 MW6.4 Nima Earthquake, Central Tibet. Acta Geoscientica Sinica, 43(2): 173-188 (in Chinese with English abstract).
      Loomis, D. P., Burbank, D. W., 1988. The Stratigraphic Evolution of the El Paso Basin, Southern California: Implications for the Miocene Development of the Garlock Fault and Uplift of the Sierra Nevada. Geological Society of America Bulletin, 100(1): 12-28. https://doi.org/10.1130/0016-7606(1988)1000012:tseote>2.3.co;2 doi: 10.1130/0016-7606(1988)1000012:tseote>2.3.co;2
      Loveless, J. P., Meade, B. J., 2011. Stress Modulation on the San Andreas Fault by Interseismic Fault System Interactions. Geology, 39(11): 1035-1038. https://doi.org/10.1130/g32215.1
      McGill, S. F., Owen, L. A., Weldon, R. J. Ⅱ, et al., 2013. Latest Pleistocene and Holocene Slip Rate for the San Bernardino Strand of the San Andreas Fault, Plunge Creek, Southern California: Implications for Strain Partitioning within the Southern San Andreas Fault System for the last ~35 k. y. Geological Society of America Bulletin, 125(1-2): 48-72. https://doi.org/10.1130/b30647.1
      McGill, S. F., Wells, S. G., Fortner, S. K., et al., 2009. Slip Rate of the Western Garlock Fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California. Geological Society of America Bulletin, 121(3-4): 536-554. https://doi.org/10.1130/b26123.1
      McGill, S., Sieh, K., 1993. Holocene Slip Rate of the Central Garlock Fault in Southeastern Searles Valley, California. Journal of Geophysical Research: Solid Earth, 98(B8): 14217-14231. https://doi.org/10.1029/93JB00442
      Mohadjer, S., Alan Ehlers, T., Bendick, R., et al., 2016. A Quaternary Fault Database for Central Asia. Natural Hazards and Earth System Sciences, 16(2): 529-542. https://doi.org/10.5194/nhess-16-529-2016
      Mohadjer, S., Bendick, R., Ischuk, A., et al., 2010. Partitioning of India-Eurasia Convergence in the Pamir-Hindu Kush from GPS Measurements. Geophysical Research Letters, 37(4): L04305. https://doi.org/10.1029/2009gl041737
      Molnar, P., Dayem, K. E., 2010. Major Intracontinental Strike-Slip Faults and Contrasts in Lithospheric Strength. Geosphere, 6(4): 444-467. https://doi.org/10.1130/ges00519.1
      Monastero, F. C., Sabin, A. E., Walker, J. D., 1997. Evidence for Post-Early Miocene Initiation of Movement on the Garlock Fault from Offset of the Cudahy Camp Formation, East-Central California. Geology, 25(3): 247. https://doi.org/10.1130/0091-7613(1997)0250247:efpemi>2.3.co;2 doi: 10.1130/0091-7613(1997)0250247:efpemi>2.3.co;2
      Naylor, M., Mandl, G. T., Supesteijn, C., 1986. Fault Geometries in Basement-Induced Wrench Faulting under Different Initial Stress States. Journal of Structural Geology, 8(7): 737-752. https://doi.org/10.1016/0191-8141(86)90022-2
      Norris, R. J., Toy, V. G., 2014. Continental Transforms: AView from the Alpine Fault. Journal of Structural Geology, 64: 3-31. https://doi.org/10.1016/j.jsg.2014.03.003
      Pananont, P., Herman, M. W., Pornsopin, P., et al., 2017. Seismotectonics of the 2014 Chiang Rai, Thailand, Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 122(8): 6367-6388. https://doi.org/10.1002/2017jb014085
      Platt, J. P., Passchier, C. W., 2016. Zipper Junctions: aNew Approach to the Intersections of Conjugate Strike-Slip Faults. Geology, 44(10): 795-798. https://doi.org/10.1130/g38058.1
      Platt, J. P., Vissers, R. L. M., 1980. Extensional Structures in Anisotropic Rocks. Journal of Structural Geology, 2(4): 397-410. https://doi.org/10.1016/0191-8141(80)90002-4
      Ranalli, G., 1995. Rheology of the Earth. 2nded. Chanman and Hall, London.
      Ratschbacher, L., Frisch, W., Linzer, H. G., et al., 1991. Lateral Extrusion in the Eastern Alps, Part 2: Structural Analysis. Tectonics, 10(2): 257-271. https://doi.org/10.1029/90tc02623
      Reid, A. J., Wilson, C. J. L., Phillips, D., et al., 2005. Mesozoic Cooling across the Yidun Arc, Central-Eastern Tibetan Plateau: A Reconna Issance 40Ar/39Ar Study. Tectonophysics, 398(1-2): 45-66. https://doi.org/10.1016/j.tecto.2005.01.002
      Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Ruleman, C. A., Crone, A. J., Machette, M. N., et al., 2007. Map and Database of Probable and Possible Quaternary Faults in Afghanistan. US Geological Survey Open-File Report, 1103(1).
      Şengör, A. M. C., Görür, N., Şaroğlu, F., 1985. Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. Strike-Slip Deformation, Basin Formation, and Sedimentation. SEPM (Society for Sedimentary Geology), 227-264. https://doi.org/10.2110/pec.85.37.0227
      Şengör, A. M. C., Kidd, W. S. F., 1979. Post-Collisional Tectonics of the Turkish-Iranian Plateau and a Comparison with Tibet. Tectonophysics, 55(3/4): 361-376. https://doi.org/10.1016/0040-1951(79)90184-7
      Shi, X. H., Kirby, E., Lu, H. J., et al., 2014. Holocene Slip Rate along the Gyaring Co Fault, Central Tibet. Geophysical Research Letters, 41(16): 5829-5837. https://doi.org/10.1002/2014gl060782
      Shnizai, Z., Matsushi, Y., Tsutsumi, H., 2020. Late Pleistocene Slip Rate of the Chaman Fault Based on 10Be Exposure Dating of Offset Geomorphic Surfaces near Kabul, Afghanistan. Tectonophysics, 795: 228593. https://doi.org/10.1016/j.tecto.2020.228593
      Su, Z., Wang, E., Furlong, K. P., et al., 2012. Young, Active Conjugate Strike-Slip Deformation in West Sichuan: Evidence for the Stress-Strain Pattern of the Southeastern Tibetan Plateau. International Geology Review, 54(9): 991-1012. https://doi.org/10.1080/00206814.2011.583491
      Sylvester, A. G., 1988. Strike-Slip Faults. Geological Society of America Bulletin, 100(11): 1666-1703. https://doi.org/10.1130/0016-7606(1988)1001666:ssf>2.3.co;2 doi: 10.1130/0016-7606(1988)1001666:ssf>2.3.co;2
      Tapponnier, P., Mattauer, M., Proust, F., et al., 1981. Mesozoic Ophiolites, Sutures, and Arge-Scale Tectonic Movements in Afghanistan. Earth and Planetary Science Letters, 52(2): 355-371. https://doi.org/10.1016/0012-821x(81)90189-8
      Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 19(1): 113-157. https://doi.org/10.1144/gsl.sp.1986.019.01.07
      Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. https://doi.org/10.1130/0091-7613(1982)10611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2
      Tatar, O., Poyraz, F., Gürsoy, H., et al., 2012. Crustal Deformation and Kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS Measurements. Tectonophysics, 518/519/520/521: 55-62. https://doi.org/10.1016/j.tecto.2011.11.010
      Taylor, M., Peltzer, G., 2006. Current Slip Rates on Conjugate Strike-Slip Faults in Central Tibet Using Synthetic Aperture Radar Interferometry. Journal of Geophysical Research: Solid Earth, 111(B12): B12402. https://doi.org/10.1029/2005jb004014
      Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike-Slip Faulting along the Bangong-Nujiang Suture Zone Accommodates Coeval East-West Extension and North-South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 1044. https://doi.org/10.1029/2002tc001361
      Tchalenko, J. S., 1970. Similarities between Shear Zones of Different Magnitudes. Geological Society of America Bulletin, 81(6): 1625-1640. https://doi.org/10.1130/0016-7606(1970)81[1625:sbszod]2.0.co;2
      Thatcher, W., Hill, D. P., 1991. Fault Orientations in Extensional and Conjugate Strike-Slip Environments and Their Implications. Geology, 19(11): 1116. https://doi.org/10.1130/0091-7613(1991)0191116:foieac>2.3.co;2 doi: 10.1130/0091-7613(1991)0191116:foieac>2.3.co;2
      Walters, R. J., Parsons, B., Wright, T. J., 2014. Constraining Crustal Velocity Fields with InSAR for Eastern Turkey: Limits to the Block-Like Behavior of Eastern Anatolia. Journal of Geophysical Research: Solid Earth, 119(6): 5215-5234. https://doi.org/10.1002/2013JB010909
      Wan, T.F., 1984. Discussion on the Shear Angle of Conjugate Fractures. Geological Review, 30(2): 106-113 (in Chinese with English abstract).
      Wang, D., Chang, H., Yin, G. M., et al., 2021. Spatial Changes in Late Quaternary Slip Rates along the Gyaring Co Fault: Implications for Strain Partitioning and Deformation Modes in Central Tibet. Tectonics, 40(5): e2020TC006110. https://doi.org/10.1029/2020TC006110
      Wang, H., Wright, T. J., Liu-Zeng, J., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019GL081916
      Wang, Y. Z., Wang, E. N., Shen, Z. K., et al., 2008. GPS-Constrained Inversion of Present-Day Slip Rates along Major Faults of the Sichuan-Yunnan Region, China. Science in China Series D: Earth Sciences, 51(9): 1267-1283. https://doi.org/10.1007/s11430-008-0106-4
      Wellman, H. W., 1954. Angle between the Principal Horizontal Stress and Transcurrent Faults. Geological Magazine, 91(5): 407-408. https://doi.org/10.1017/s001675680006581x
      White, S. H., Burrows, S. E., Carreras, J., et al., 1980. On Mylonites in Ductile Shear Zones. Journal of Structural Geology, 2(1/2): 175-187. https://doi.org/10.1016/0191-8141(80)90048-6
      Wilcox, R. E., Harding, T. T., Seely, D., 1973. Basic Wrench Tectonics. AAPG Bulletin, 57: 74-96. https://doi.org/10.1306/819a424a-16c5-11d7-8645000102c1865d
      Wilson, C. J. L., Harrowfield, M. J., Reid, A. J., 2006. Brittle Modification of Triassic Architecture in Eastern Tibet: Implications for the Construction of the Cenozoic Plateau. Journal of Asian Earth Sciences, 27(3): 341-357. https://doi.org/10.1016/j.jseaes.2005.04.004
      Wright, T., Parsons, B., Fielding, E., 2001. Measurement of Interseismic Strain Accumulation across the North Anatolian Fault by Satellite Radar Interferometry. Geophysical Research Letters, 28(10): 2117-2120. https://doi.org/10.1029/2000gl012850
      Wu, G.H., Ma, B.S., Han, J.F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520 (in Chinese with English abstract).
      Xu, L. L., Rondenay, S., van der Hilst, R. D., 2007. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 165(3/4): 176-193. https://doi.org/10.1016/j.pepi.2007.09.002
      Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2005. Average Slip Rate, Earthquake Rupturing Segmentation and Recurrence Behavior on the Litang Fault Zone, Western Sichuan Province, China. Science in China Series D: Earth Sciences, 48(8): 1183-1196. https://doi.org/10.1360/04yd0072
      Xu, X., Wen, X., Zheng, R., et al., 2003. Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region, China. Science in China Series D: Earth Sciences, 46(2): 210-226. doi. org/10.1360/03dz0017
      Xu, Z.Q., Li, H.B., Tang, Z.M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau through Large-Scale Strike-Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract).
      Yang, W., Liu, X., Chen, Z., et al., 2022. Asthenosphere Mass Movement in Qinghai-Tibetan Plateau Revealed by High-Resolution Seismic Tomography. Earth Science, 47(10): 3491-3500 (in Chinese with English abstract).
      Yin, A., Taylor, M. H., 2011. Mechanics of V-Shaped Conjugate Strike-Slip Faults and the Corresponding Continuum Mode of Continental Deformation. Geological Society of America Bulletin, 123(9/10): 1798-1821. https://doi.org/10.1130/b30159.1
      Zeng, Q. L., Yuan, G. X., Davies, T., et al., 2020. 10Be Dating and Seismic Origin of Luanshibao Rock Avalanche in SE Tibetan Plateau and Implications on Litang Active Fault. Landslides, 17(5): 1091-1104. https://doi.org/10.1007/s10346-019-01319-z
      Zhang, H., Zhao, D. P., Zhao, J. M., et al., 2012. Convergence of the Indian and Eurasian Plates under Eastern Tibet Revealed by Seismic Tomography. Geochemistry, Geophysics, Geosystems, 13(6): Q06W14. https://doi.org/10.1029/2012gc004031
      Zhang, Y. Z., Replumaz, A., Wang, G. C., et al., 2015. Timing and Rate of Exhumation along the Litang Fault System, Implication for Fault Reorganization in Southeast Tibet. Tectonics, 34(6): 1219-1243. https://doi.org/10.1002/2014tc003671
      Zheng, Y. D., Wang, E., Zhang, J. J., et al., 2011. A Challenge to the Concept of Slip-Lines in Extrusion Tectonics. Geoscience Frontiers, 2(1): 23-34. https://doi.org/10.1016/j.gsf.2010.11.006
      Zheng, Y.F., 1981. Preliminary Analysis of Sichuan Conjugate Fault Earthquake. Earthquake Research in Sichuan, (4): 24-28 (in Chinese with English abstract).
      Zhou, L. Q., Zhao, C. P., Xiu, J. G., et al., 2008. Tomography of QLg in Sichuan-Yunnan Zone. Chinese Journal of Geophysics, 51(6): 1159-1167. https://doi.org/10.1002/cjg2.1312
      Zhou, R., Xie, Y., Li, Y., et al., 2007. Late-Quaternary Activity of the Shawan Segment of the Litang Faults. Quaternary Sciences, 27(1): 45-53.
      Zhou, R.J., Chen, G.X., Li, Y., et al., 2005. Research on Active Faults in Litang-Batang Region, Western Sichuan Province, and the Seismogenic Structures of the 1989 Batang Mw6.7 Earthquake Sware. Seismology and Geology, (1): 31-43(in Chinese with English abstract).
      李海兵, 杨经绥, 许志琴, 等, 2006. 阿尔金断裂带对青藏高原北部生长、隆升的制约. 地学前缘, 13(4): 59-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604005.htm
      刘富财, 潘家伟, 李海兵, 等, 2022. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛Mw6.4地震发震构造分析. 地球学报, 43(2): 173-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202202004.htm
      万天丰, 1984. 关于共轭断裂剪切角的讨论. 地质论评, 30(2): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198402001.htm
      邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm
      许志琴, 李海兵, 唐哲民, 等, 2011. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157-3170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111001.htm
      杨文采, 刘晓宇, 陈召曦, 等, 2022. 从高分辨率地震层析成像看青藏高原软流圈的物质运动. 地球科学, 47(10): 3491-3500. doi: 10.3799/dqkx.2022.871
      郑友福, 1981. 四川共轭断裂型地震初步分析. 四川地震, (4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ198104005.htm
      周荣军, 陈国星, 李勇, 等, 2005. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究. 地震地质, (1): 31-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200501003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (2553) PDF downloads(254) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return