Citation: | Deng Xiyu, Liu Hui, Huang Yao, 2024. Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water. Earth Science, 49(7): 2627-2636. doi: 10.3799/dqkx.2023.022 |
Berg, M., Trang, P. T. K., Stengel, C., et al., 2008. Hydrological and Sedimentary Controls Leading to Arsenic Contamination of Groundwater in the Hanoi Area, Vietnam: The Impact of Iron-Arsenic Ratios, Peat, River Bank Deposits, and Excessive Groundwater Abstraction. Chemical Geology, 249(1-2): 91-112. https://doi.org/10.1016/j.chemgeo.2007.12.007
|
Boano, F., Harvey, J. W., Marion, A., et al., 2014. Hyporheic Flow and Transport Processes: Mechanisms, Models, and Biogeochemical Implications. Reviews of Geophysics, 52(4): 603-679. https://doi.org/10.1002/2012RG000417
|
Brown, B. V., Valett, H. M., Schreiber, M. E., 2007. Arsenic Transport in Groundwater, Surface Water, and the Hyporheic Zone of a Mine‐Influenced Stream‐Aquifer System. Water Resources Research, 43(11): 1-44. https://doi.org/10.1029/2006WR005687
|
Datta, S., Mailloux, B., Jung, H. B., et al., 2009. Redox Trapping of Arsenic during Groundwater Discharge in Sediments from the Meghna Riverbank in Bangladesh. Proceedings of the National Academy of Sciences of the United States of America, 106(40): 16930-16935. https://doi.org/10.1073/pnas.0908168106
|
Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2015. Temporal Variation of Groundwater Level and Arsenic Concentration at Jianghan Plain, Central China. Journal of Geochemical Exploration, 149: 106-119. https://doi.org/10.1016/j.gexplo.2014.12.001
|
Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2017. Arsenic Speciation in Aquifer Sediment under Varying Groundwater Regime and Redox Conditions at Jianghan Plain of Central China. Science of the Total Environment, 607-608: 992-1000. https://doi.org/10.1016/j.scitotenv.2017.07.011
|
Fleckenstein, J. H., Krause, S., Hannah, D. M., et al., 2010. Groundwater-Surface Water Interactions: New Methods and Models to Improve Understanding of Processes and Dynamics. Advances in Water Resources, 33(11): 1291-1295. https://doi.org/10.1016/j.advwatres.2010.09.011
|
Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
|
Johnston, R. B., Singer, P. C., 2007. Redox Reactions in the Fe-As-O2 System. Chemosphere, 69(4): 517-525.10.1016/j. chemosphere. 2007.03.036 doi: 10.1016/j.chemosphere.2007.03.036
|
Jung, H. B., Bostick, B. C., Zheng, Y., et al., 2012. Field, Experimental, and Modeling Study of Arsenic Partitioning across a Redox Transition in a Bangladesh Aquifer. Environmental Science & Technology, 46(3): 1388-1395. https://doi.org/10.1021/es2032967
|
Jung, H. B., Charette, M. A., Zheng, Y., et al., 2009. Field, Laboratory, and Modeling Study of Reactive Transport of Groundwater Arsenic in a Coastal Aquifer. Environmental Science & Technology, 43(14): 5333-5338. https://doi.org/10.1021/es900080q
|
Kiel, B. A., Cardenas, M. B., 2014. Lateral Hyporheic Exchange Throughout the Mississippi River Network. Nature Geoscience, 7(6): 413-417. https://doi.org/10.1038/ngeo2157
|
Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176
|
Liu, S., Liu, H., Wang, Z., et al., 2019. Benzene Promotes Microbial Fe(Ⅲ) Reduction and Flavins Secretion. Geochimica et Cosmochimica Acta, 264: 92-104. https://doi.org/10.1016/j.gca.2019.08.013
|
Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741 (in Chinese with English abstract).
|
Ma, J., Guo, H. M., Lei, M., et al., 2015. Arsenic Adsorption and Its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water, Air, & Soil Pollution, 226(8): 1-15. https://doi.org/10.1007/s11270-015-2524-1
|
Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12: 797-808. https://doi.org/10.1038/nrmicro3347
|
Ona-Nguema, G., Morin, G., Wang, Y. H., et al., 2010. XANES Evidence for Rapid Arsenic(Ⅲ) Oxidation at Magnetite and Ferrihydrite Surfaces by Dissolved O2 via Fe2+-Mediated Reactions. Environmental Science & Technology, 44(14): 5416-5422. https://doi.org/10.1021/es1000616
|
Refait, P., Girault, P., Jeannin, M., et al., 2009. Influence of Arsenate Species on the Formation of Fe(Ⅲ) Oxyhydroxides and Fe(Ⅱ-Ⅲ) Hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1): 26-35. https://doi.org/10.1016/j.colsurfa.2008.08.020
|
Shabaga, J. A., Hill, A. R., 2010. Groundwater-Fed Surface Flow Path Hydrodynamics and Nitrate Removal in Three Riparian Zones in Southern Ontario, Canada. Journal of Hydrology, 388(1-2): 52-64. https://doi.org/10.1016/j.jhydrol.2010.04.028
|
Shen, J. H., Liu, H., Zhou, H. Z., et al., 2022. Specific Characteristics of the Microbial Community in the Groundwater Fluctuation Zone. Environmental Science and Pollution Research, 29(50): 76066-76077. https://doi.org/10.1007/s11356-022-21166-1
|
Shiowatana, J., McLaren, R. G., Chanmekha, N., et al., 2001. Fractionation of Arsenic in Soil by a Continuous-Flow Sequential Extraction Method. Journal of Environmental Quality, 30(6): 1940-1949. https://doi.org/10.2134/jeq2001.1940
|
Sophocleous, M., 2002. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeology Journal, 10(1): 52-67. https://doi.org/10.1007/s10040-001-0170-8
|
Stumm, W., Sulzberger, B., 1992. The Cycling of Iron in Natural Environments: Considerations Based on Laboratory Studies of Heterogeneous Redox Processes. Geochimica et Cosmochimica Acta, 56(8): 3233-3257. https://doi.org/10.1016/0016-7037(92)90301-x
|
Sun, J., Prommer, H., Siade, A. J., et al., 2018. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & Technology, 52(16): 9243-9253. https://doi.org/10.1021/acs.est.8b01762
|
Tong, M., Yuan, S. H., Zhang, P., et al., 2014. Electrochemically Induced Oxidative Precipitation of Fe(Ⅱ) for As(Ⅲ) Oxidation and Removal in Synthetic Groundwater. Environmental Science & Technology, 48(9): 5145-5153. https://doi.org/10.1021/es500409m
|
Tong, J. R., 2020. The Mechanism of Arsenic Migration and Transformation Affected by Redox Dynamics of Mineral Transformation (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Wang, J. Q., Ma, R., Sun, Z. Y., 2019. Reactive Transport and Model of Nitrogen Pollutants in the Surface Water-Ground Water Interaction Zones: A Review. Geological Science and Technology Information, 38(4): 270-280 (in Chinese with English abstract).
|
Wenzel, W. W., Kirchbaumer, N., Prohaska, T., et al., 2001. Arsenic Fractionation in Soils Using an Improved Sequential Extraction Procedure. Analytica Chimica Acta, 436(2): 309-323. https://doi.org/10.1016/s0003-2670(01)00924-2
|
Westbrook, S. J., Rayner, J. L., Davis, G. B., et al., 2005. Interaction between Shallow Groundwater, Saline Surface Water and Contaminant Discharge at a Seasonally and Tidally Forced Estuarine Boundary. Journal of Hydrology, 302(1-4): 255-269. https://doi.org/10.1016/j.jhydrol.2004.07.007
|
Wu, X. H., Bowers, B., Kim, D., et al., 2019. Dissolved Organic Matter Affects Arsenic Mobility and Iron(Ⅲ) (Hydr)Oxide Formation: Implications for Managed Aquifer Recharge. Environmental Science & Technology, 53(24): 14357-14367. https://doi.org/10.1021/acs.est.9b04873
|
Xie, X. J., Johnson, T. M., Wang, Y. X., et al., 2014. Pathways of Arsenic from Sediments to Groundwater in the Hyporheic Zone: Evidence from an Iron Isotope Study. Journal of Hydrology, 511: 509-517. https://doi.org/10.1016/j.jhydrol.2014.02.006
|
Xin, P., Wang, S. S. J., Shen, C. J., et al., 2018. Predictability and Quantification of Complex Groundwater Table Dynamics Driven by Irregular Surface Water Fluctuations. Water Resources Research, 54(3): 2436-2451. https://doi.org/10.1002/2017wr021761
|
Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
|
Yamamura, S., Amachi, S., 2014. Microbiology of Inorganic Arsenic: From Metabolism to Bioremediation. Journal of Bioscience and Bioengineering, 118(1): 1-9. https://doi.org/10.1016/j.jbiosc.2013.12.011
|
Yuan, R. Q., Wang, M., Wang, S. Q., et al., 2020. Water Transfer Imposes Hydrochemical Impacts on Groundwater by Altering the Interaction of Groundwater and Surface Water. Journal of Hydrology, 583: 124617. https://doi.org/10.1016/j.jhydrol.2020.124617
|
Zhang, W. W., Yu, Y, Zhang, L. L., et al., 2017. Method for Determination of Total Arsenic in Surface Water. Resource Conservation and Environmental Protection, (8): 143-144 (in Chinese with English abstract).
|
Zhao, S., Zhang, B. J., Sun, X. H., et al., 2020. Hot Spots and Hot Moments of Nitrogen Removal from Hyporheic and Riparian Zones: A Review. Science of the Total Environment, 762: 144168. https://doi.org/10.1016/j.scitotenv.2020.144168
|
马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水‒地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
|
童佳荣, 2020. 矿物的氧化还原动力学转化过程对砷迁移转化的影响机理(博士学位论文). 武汉: 中国地质大学.
|
王佳琪, 马瑞, 孙自永, 2019. 地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展. 地质科技情报, 38(4): 270-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904029.htm
|
徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
|
张伟薇, 于洋, 张丽丽, 等, 2017. 地表水中总砷的测定方法. 资源节约与环保, (8): 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJH201708082.htm
|