• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Deng Xiyu, Liu Hui, Huang Yao, 2024. Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water. Earth Science, 49(7): 2627-2636. doi: 10.3799/dqkx.2023.022
    Citation: Deng Xiyu, Liu Hui, Huang Yao, 2024. Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water. Earth Science, 49(7): 2627-2636. doi: 10.3799/dqkx.2023.022

    Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water

    doi: 10.3799/dqkx.2023.022
    • Received Date: 2022-11-01
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • During groundwater discharge into the river, Fe2+ and As3+ in anoxic groundwater are brought into the oxygen-containing interaction zone. This study explores the co-migration and transformation mechanism of Fe2+ and As3+with groundwater in the natural sediment medium.The migration and transformation rules of Fe2+ and As3+during groundwater discharge into river water and the transformation rate of Fe2+ and As3+ to solid phase (solidification) in different regions of the interaction zone are studied by laboratory column experiment and batch experiment.The results show that the sediment strongly adsorbs Fe2+ and As3+, and As3+ accelerates the migration of Fe2+. The chemical oxidation and precipitation of Fe2+ occur, and Fe-As bounding minerals are formed when it flows through the interaction zone.The solidification rate of Fe2+ and As3+ is accelerated from the area far from the river to that near the river. In the whole interaction zone, Fe2+ significantly promotes the solidification of As3+, while As3+ slightly inhibits the solidification of Fe2+ near the river bank.In short, during groundwater discharge into river water, the synergistic chemical oxidation and adsorption fixation of Fe2+ and As3+in groundwater occur at different rates in different regions of the interaction zone, which seriously hinders their migration to river water.

       

    • Berg, M., Trang, P. T. K., Stengel, C., et al., 2008. Hydrological and Sedimentary Controls Leading to Arsenic Contamination of Groundwater in the Hanoi Area, Vietnam: The Impact of Iron-Arsenic Ratios, Peat, River Bank Deposits, and Excessive Groundwater Abstraction. Chemical Geology, 249(1-2): 91-112. https://doi.org/10.1016/j.chemgeo.2007.12.007
      Boano, F., Harvey, J. W., Marion, A., et al., 2014. Hyporheic Flow and Transport Processes: Mechanisms, Models, and Biogeochemical Implications. Reviews of Geophysics, 52(4): 603-679. https://doi.org/10.1002/2012RG000417
      Brown, B. V., Valett, H. M., Schreiber, M. E., 2007. Arsenic Transport in Groundwater, Surface Water, and the Hyporheic Zone of a Mine‐Influenced Stream‐Aquifer System. Water Resources Research, 43(11): 1-44. https://doi.org/10.1029/2006WR005687
      Datta, S., Mailloux, B., Jung, H. B., et al., 2009. Redox Trapping of Arsenic during Groundwater Discharge in Sediments from the Meghna Riverbank in Bangladesh. Proceedings of the National Academy of Sciences of the United States of America, 106(40): 16930-16935. https://doi.org/10.1073/pnas.0908168106
      Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2015. Temporal Variation of Groundwater Level and Arsenic Concentration at Jianghan Plain, Central China. Journal of Geochemical Exploration, 149: 106-119. https://doi.org/10.1016/j.gexplo.2014.12.001
      Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2017. Arsenic Speciation in Aquifer Sediment under Varying Groundwater Regime and Redox Conditions at Jianghan Plain of Central China. Science of the Total Environment, 607-608: 992-1000. https://doi.org/10.1016/j.scitotenv.2017.07.011
      Fleckenstein, J. H., Krause, S., Hannah, D. M., et al., 2010. Groundwater-Surface Water Interactions: New Methods and Models to Improve Understanding of Processes and Dynamics. Advances in Water Resources, 33(11): 1291-1295. https://doi.org/10.1016/j.advwatres.2010.09.011
      Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Johnston, R. B., Singer, P. C., 2007. Redox Reactions in the Fe-As-O2 System. Chemosphere, 69(4): 517-525.10.1016/j. chemosphere. 2007.03.036 doi: 10.1016/j.chemosphere.2007.03.036
      Jung, H. B., Bostick, B. C., Zheng, Y., et al., 2012. Field, Experimental, and Modeling Study of Arsenic Partitioning across a Redox Transition in a Bangladesh Aquifer. Environmental Science & Technology, 46(3): 1388-1395. https://doi.org/10.1021/es2032967
      Jung, H. B., Charette, M. A., Zheng, Y., et al., 2009. Field, Laboratory, and Modeling Study of Reactive Transport of Groundwater Arsenic in a Coastal Aquifer. Environmental Science & Technology, 43(14): 5333-5338. https://doi.org/10.1021/es900080q
      Kiel, B. A., Cardenas, M. B., 2014. Lateral Hyporheic Exchange Throughout the Mississippi River Network. Nature Geoscience, 7(6): 413-417. https://doi.org/10.1038/ngeo2157
      Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176
      Liu, S., Liu, H., Wang, Z., et al., 2019. Benzene Promotes Microbial Fe(Ⅲ) Reduction and Flavins Secretion. Geochimica et Cosmochimica Acta, 264: 92-104. https://doi.org/10.1016/j.gca.2019.08.013
      Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741 (in Chinese with English abstract).
      Ma, J., Guo, H. M., Lei, M., et al., 2015. Arsenic Adsorption and Its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water, Air, & Soil Pollution, 226(8): 1-15. https://doi.org/10.1007/s11270-015-2524-1
      Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12: 797-808. https://doi.org/10.1038/nrmicro3347
      Ona-Nguema, G., Morin, G., Wang, Y. H., et al., 2010. XANES Evidence for Rapid Arsenic(Ⅲ) Oxidation at Magnetite and Ferrihydrite Surfaces by Dissolved O2 via Fe2+-Mediated Reactions. Environmental Science & Technology, 44(14): 5416-5422. https://doi.org/10.1021/es1000616
      Refait, P., Girault, P., Jeannin, M., et al., 2009. Influence of Arsenate Species on the Formation of Fe(Ⅲ) Oxyhydroxides and Fe(Ⅱ-Ⅲ) Hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1): 26-35. https://doi.org/10.1016/j.colsurfa.2008.08.020
      Shabaga, J. A., Hill, A. R., 2010. Groundwater-Fed Surface Flow Path Hydrodynamics and Nitrate Removal in Three Riparian Zones in Southern Ontario, Canada. Journal of Hydrology, 388(1-2): 52-64. https://doi.org/10.1016/j.jhydrol.2010.04.028
      Shen, J. H., Liu, H., Zhou, H. Z., et al., 2022. Specific Characteristics of the Microbial Community in the Groundwater Fluctuation Zone. Environmental Science and Pollution Research, 29(50): 76066-76077. https://doi.org/10.1007/s11356-022-21166-1
      Shiowatana, J., McLaren, R. G., Chanmekha, N., et al., 2001. Fractionation of Arsenic in Soil by a Continuous-Flow Sequential Extraction Method. Journal of Environmental Quality, 30(6): 1940-1949. https://doi.org/10.2134/jeq2001.1940
      Sophocleous, M., 2002. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeology Journal, 10(1): 52-67. https://doi.org/10.1007/s10040-001-0170-8
      Stumm, W., Sulzberger, B., 1992. The Cycling of Iron in Natural Environments: Considerations Based on Laboratory Studies of Heterogeneous Redox Processes. Geochimica et Cosmochimica Acta, 56(8): 3233-3257. https://doi.org/10.1016/0016-7037(92)90301-x
      Sun, J., Prommer, H., Siade, A. J., et al., 2018. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & Technology, 52(16): 9243-9253. https://doi.org/10.1021/acs.est.8b01762
      Tong, M., Yuan, S. H., Zhang, P., et al., 2014. Electrochemically Induced Oxidative Precipitation of Fe(Ⅱ) for As(Ⅲ) Oxidation and Removal in Synthetic Groundwater. Environmental Science & Technology, 48(9): 5145-5153. https://doi.org/10.1021/es500409m
      Tong, J. R., 2020. The Mechanism of Arsenic Migration and Transformation Affected by Redox Dynamics of Mineral Transformation (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, J. Q., Ma, R., Sun, Z. Y., 2019. Reactive Transport and Model of Nitrogen Pollutants in the Surface Water-Ground Water Interaction Zones: A Review. Geological Science and Technology Information, 38(4): 270-280 (in Chinese with English abstract).
      Wenzel, W. W., Kirchbaumer, N., Prohaska, T., et al., 2001. Arsenic Fractionation in Soils Using an Improved Sequential Extraction Procedure. Analytica Chimica Acta, 436(2): 309-323. https://doi.org/10.1016/s0003-2670(01)00924-2
      Westbrook, S. J., Rayner, J. L., Davis, G. B., et al., 2005. Interaction between Shallow Groundwater, Saline Surface Water and Contaminant Discharge at a Seasonally and Tidally Forced Estuarine Boundary. Journal of Hydrology, 302(1-4): 255-269. https://doi.org/10.1016/j.jhydrol.2004.07.007
      Wu, X. H., Bowers, B., Kim, D., et al., 2019. Dissolved Organic Matter Affects Arsenic Mobility and Iron(Ⅲ) (Hydr)Oxide Formation: Implications for Managed Aquifer Recharge. Environmental Science & Technology, 53(24): 14357-14367. https://doi.org/10.1021/acs.est.9b04873
      Xie, X. J., Johnson, T. M., Wang, Y. X., et al., 2014. Pathways of Arsenic from Sediments to Groundwater in the Hyporheic Zone: Evidence from an Iron Isotope Study. Journal of Hydrology, 511: 509-517. https://doi.org/10.1016/j.jhydrol.2014.02.006
      Xin, P., Wang, S. S. J., Shen, C. J., et al., 2018. Predictability and Quantification of Complex Groundwater Table Dynamics Driven by Irregular Surface Water Fluctuations. Water Resources Research, 54(3): 2436-2451. https://doi.org/10.1002/2017wr021761
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Yamamura, S., Amachi, S., 2014. Microbiology of Inorganic Arsenic: From Metabolism to Bioremediation. Journal of Bioscience and Bioengineering, 118(1): 1-9. https://doi.org/10.1016/j.jbiosc.2013.12.011
      Yuan, R. Q., Wang, M., Wang, S. Q., et al., 2020. Water Transfer Imposes Hydrochemical Impacts on Groundwater by Altering the Interaction of Groundwater and Surface Water. Journal of Hydrology, 583: 124617. https://doi.org/10.1016/j.jhydrol.2020.124617
      Zhang, W. W., Yu, Y, Zhang, L. L., et al., 2017. Method for Determination of Total Arsenic in Surface Water. Resource Conservation and Environmental Protection, (8): 143-144 (in Chinese with English abstract).
      Zhao, S., Zhang, B. J., Sun, X. H., et al., 2020. Hot Spots and Hot Moments of Nitrogen Removal from Hyporheic and Riparian Zones: A Review. Science of the Total Environment, 762: 144168. https://doi.org/10.1016/j.scitotenv.2020.144168
      马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水‒地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
      童佳荣, 2020. 矿物的氧化还原动力学转化过程对砷迁移转化的影响机理(博士学位论文). 武汉: 中国地质大学.
      王佳琪, 马瑞, 孙自永, 2019. 地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展. 地质科技情报, 38(4): 270-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904029.htm
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      张伟薇, 于洋, 张丽丽, 等, 2017. 地表水中总砷的测定方法. 资源节约与环保, (8): 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJH201708082.htm
    • Relative Articles

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (316) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return