• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Liu Rui, Chen Juan, Qiu Wenkai, Peng Ziqi, Ma Teng, 2024. Evaluation of Release Amount of Organic Carbon from Clayey Aquitard under Compaction. Earth Science, 49(7): 2600-2613. doi: 10.3799/dqkx.2023.024
    Citation: Liu Rui, Chen Juan, Qiu Wenkai, Peng Ziqi, Ma Teng, 2024. Evaluation of Release Amount of Organic Carbon from Clayey Aquitard under Compaction. Earth Science, 49(7): 2600-2613. doi: 10.3799/dqkx.2023.024

    Evaluation of Release Amount of Organic Carbon from Clayey Aquitard under Compaction

    doi: 10.3799/dqkx.2023.024
    • Received Date: 2022-09-28
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • In order to quantitatively assess the amount of organic carbon (OC) released by clayey aquitard to adjacent aquifers during compaction, the background values of OC in borehole sediments were used as the constraint condition in the study area of the Chen Lake Wetland. The physical simulation experiments of natural sedimentation and artificial compaction were carried out by collecting surficial undisturbed silt, and a mathematical model representing the difference of release amount of OC at different depths was established. Under natural deposition conditions, sediment OC was released with pore water through mineralization and reduction dissolution of associated minerals; the concentration contribution of OC to the underlying aquifer (about 50-80 m) from clayey aquitard (about 20 m) is 6.99-11.19 mg/L under compaction, which is about 3.9 times of OC release amount under advection and diffusion. Under artificial compaction condition represented by land subsidence, the concentration contribution of organic carbon is 0.19-2.02 mg/L under compaction, which is higher than that of advection and diffusion in the same period. Compaction release of clayey aquitard pore water is an important source of OC in groundwater, which should be paid more attention in the study of natural inferior groundwater.

       

    • loading
    • Alvarez, D. A., Rosen, M. R., Perkins, S. D., et al., 2012. Bottom Sediment as a Source of Organic Contaminants in Lake Mead, Nevada, USA. Chemosphere, 88(5): 605-611. https://doi.org/10.1016/j.chemosphere.2012.03.040
      Beylich, A., Oberholzer, H. R., Schrader, S., et al., 2010. Evaluation of Soil Compaction Effects on Soil Biota and Soil Biological Processes in Soils. Soil and Tillage Research, 109(2): 133-143. https://doi.org/10.1016/j.still.2010.05.010
      Chen, Z. H., Wang, B. G., Zhao, J. F., 2022. Adsorption and Desorption Characteristics of Cd in Upland and Paddy Soil of Jianghan Plain. Earth Science, 47(2): 544-555 (in Chinese with English abstract).
      Deng, Y. M., Li, H. J., Wang, Y. X., et al., 2014. Temporal Variability of Groundwater Chemistry and Relationship with Water-Table Fluctuation in the Jianghan Plain, Central China. Procedia Earth and Planetary Science, 10: 100-103. https://doi.org/10.1016/j.proeps.2014.08.018
      Du, Y., Deng, Y. M., Ma, T., et al., 2018. Hydrogeochemical Evidences for Targeting Sources of Safe Groundwater Supply in Arsenic-Affected Multi-Level Aquifer Systems. Science of the Total Environment, 645: 1159-1171. https://doi.org/10.1016/j.scitotenv.2018.07.173
      Du, Y., Deng, Y. M., Ma, T., et al., 2020. Enrichment of Geogenic Ammonium in Quaternary Alluvial-Lacustrine Aquifer Systems: Evidence from Carbon Isotopes and DOM Characteristics. Environmental Science & Technology, 54(10): 6104-6114. https://doi.org/10.1021/acs.est.0c00131
      Du, Y., Ma, T., Deng, Y., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 19 (2): 161-172. https://doi.org/10.1039/C6EM00531D
      Duan, Y. H., 2016. Seasonal Variations of Groundwater Arsenic Concentration in Shallow Aquifers (Dissertation). China University of Geosciences, Wuhan, 20-23 (in Chinese with English abstract).
      Ge, W. L., Li, Y. J., Zhang, C. M., et al., 2022. An Attribution Analysis of Land Subsidence Features in the City of Bayannur in Inner Mongolia Based on InSAR. Hydrogeology & Engineering Geology, 49(4): 198-206 (in Chinese with English abstract).
      Guan, S., Yang, Q., Li, Y. N., et al., 2022. River Flooding Response to ENSO-Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo.2022.110834
      Guo, H. M., Gao, Z. P., Xiu, W., 2022. Research Status and Trend of Coupling between Nitrogen Cycle and Arsenic Migration and Transformation in Groundwater Systems. Hydrogeology & Engineering Geology, 49(3): 153-163 (in Chinese with English abstract).
      Guo, H. P., Li, W. P., Wang, L. Y., et al., 2021. Present Situation and Research Prospects of the Land Subsidence Driven by Groundwater Levels in the North China Plain. Hydrogeology & Engineering Geology, 48(3): 162-171 (in Chinese with English abstract).
      Guo, W. R., Cecchetti, A. R., Wen, Y., et al., 2020. Sulfur Cycle in a Wetland Microcosm: Extended 34S-Stable Isotope Analysis and Mass Balance. Environmental Science & Technology, 54(9): 5498-5508. https://doi.org/10.1021/acs.est.9b05740
      Hendry, M. J., Wassenaar, L. I., 2004. Transport and Geochemical Controls on the Distribution of Solutes and Stable Isotopes in a Thick Clay-Rich till Aquitard, Canada. Isotopes in Environmental and Health Studies, 40(1): 3-19. https://doi.org/10.1080/10256010310001644942
      Jiao, J. J., Wang, Y., Cherry, J. A., et al., 2010. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer-Aquitard System in the Pearl River Delta, China. Environmental Science & Technology, 44(19): 7470-7475. https://doi.org/10.1021/es1021697
      Liu, R., 2021. Effects and Mechanism of Fe on Organic Carbon Transformation during the Formation of Clayey Aquitard (Dissertation). China University of Geosciences, Wuhan, 57-77 (in Chinese with English abstract).
      Liu, R., Ma, T., Zhang, D., et al., 2020a. Spatial Distribution and Factors Influencing the Different Forms of Ammonium in Sediments and Pore Water of the Aquitard along the Tongshun River, China. Environmental Pollution, 266: 1152121. https://doi.org/10.1016/j.envpol.2020.115212
      Liu, Y. J., Ma, T., Chen, J., et al., 2020b. Compaction Simulator: A Novel Device for Pressure Experiments of Subsurface Sediments. Journal of Earth Science, 31(5): 1045-1050. https://doi.org/10.1007/s12583-020-1334-6
      Liu, R., Ma, T., Qiu, W., et al., 2020c. Effects of Fe Oxides on Organic Carbon Variation in the Evolution of Clayey Aquitard and Environmental Significance. Science of the Total Environment, 701: 134776. https://doi.org/10.1016/j.scitotenv.2019.134776
      Liu, R., Ma, T., Lin, C., et al., 2020d. Transfer and Transformation Mechanisms of Fe Bound-Organic Carbon in the Aquitard of a Lake-Wetland System during Reclamation. Environmental Pollution, 263: 114441. https://doi.org/10.1016/j.envpol.2020.114441
      Liu, R., Ma, T., Qiu, W. K., et al., 2019. Discussions on Environmental Significance of Organic Carbon in Silt Sediments. Environmental Science & Technology, 42(1): 184-192 (in Chinese with English abstract).
      Liu, Y. J., Ma, T., Du, Y., et al., 2016. A Simulation Method for Burial Evolution of Muddy Sediments. China, 201610029479.0 (in Chinese).
      Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      Mihajlov, I., Mozumder, M. R. H., Bostick, B. C., et al., 2020. Arsenic Contamination of Bangladesh Aquifers Exacerbated by Clay Layers. Nature Communications, 11(1): 1-9. https://doi.org/10.1038/s41467-020-16104-z
      Niggemyer, A., Spring, S., Stackebrandt, E., et al., 2001. Isolation and Characterization of a Novel As(V)-Reducing Bacterium: Implications for Arsenic Mobilization and the Genus Desulfitobacterium. Applied and Environmental Microbiology, 67(12): 5568-5580. https://doi.org/10.1128/aem.67.12.5568-5580.2001
      Polizzotto, M. L., Kocar, B. D., Benner, S. G., et al., 2008. Near-Surface Wetland Sediments as a Source of Arsenic Release to Ground Water in Asia. Nature, 454: 505-508. https://doi.org/10.1038/nature07093
      Potter, P. E., Maynard, J. B., Depetris, P. J., 2005. Mud and Mudstones: Introduction and Overview. Springer Press, New York, 12.
      Qiu, W. K., Ma, T., Liu, R., et al., 2022. Variations in the Mineral Structures Dominating Solute Mobilization during Clay Compaction. Journal of Hydrology, 610: 127843. https://doi.org/10.1016/j.jhydrol.2022.127843
      Smith, R. G., Knight, R., Fendorf, S., 2018. Overpumping Leads to California Groundwater Arsenic Threat. Nature Communications, 9: 2089. https://doi.org/10.1038/s41467-018-04475-3
      Wang, L. G., 2015. Effect of Variable Temperature on Soil Organic Carbon Mineralization and Kinetics Features (Dissertation). Southwest University, Chongqing, 17-23 (in Chinese with English abstract).
      Wang, P. F., Zhao, L., Wang, C., et al., 2009. Nitrogen Distribution and Potential Mobility in Sediments of Three Typical Shallow Urban Lakes in China. Environmental Engineering Science, 26(10): 1511-1521. https://doi.org/10.1089/ees.2008.0367
      Wang, X. T., Di, G. S., 2019. Monitoring and Analysis of Land Subsidence in Eastern Liaocheng Based on PS- InSAR. Bulletin of Surveying and Mapping, (S2): 149-153 (in Chinese).
      Wang, Y., Jiao, J. J., Cherry, J. A., et al., 2013. Contribution of the Aquitard to the Regional Groundwater Hydrochemistry of the Underlying Confined Aquifer in the Pearl River Delta, China. Science of the Total Environment, 461-462: 663-671. https://doi.org/10.1016/j.scitotenv.2013.05.046
      Wang, Y., Jiao, J. J., Zhang, K., et al., 2016. Enrichment and Mechanisms of Heavy Metal Mobility in a Coastal Quaternary Groundwater System of the Pearl River Delta, China. Science of the Total Environment, 545-546: 493-502. https://doi.org/10.1016/j.scitotenv.2015.12.019
      Westerhoff, P., Highfield, D., Badruzzaman, M., et al., 2005. Rapid Small-Scale Column Tests for Arsenate Removal in Iron Oxide Packed Bed Columns. Journal of Environmental Engineering, 131(2): 262-271. https://doi.org/10.1061/(asce)0733-9372(2005)131: 2(262) doi: 10.1061/(asce)0733-9372(2005)131:2(262
      Xiao, C., 2019. Migration and Transformation Mechanism of Arsenic in Variable-Permeability Clayey Aquitard at Jianghan Plain (Dissertation). China University of Geosciences, Wuhan, 9-13 (in Chinese with English abstract).
      Xiao, C., Ma, T., Du, Y., 2021. Arsenic Releasing Mechanisms during Clayey Sediments Compaction: An Experiment Study. Journal of Hydrology, 597: 125743. https://doi.org/10.1016/j.jhydrol.2020.125743
      Zhang, J. W., Liang, X., Ge, Q., et al., 2017. Calculation Method about Hydraulic Conductivity of Quaternary Aquitard in Jianghan Plain. Earth Science, 42(5): 761-770 (in Chinese with English abstract).
      Zhang, R. Q., Liang, X., Jin, M., et al., 2011. Fundamentals of Hydrogeology. Geological Publishing House, Beijing (in Chinese).
      陈孜涵, 汪丙国, 赵建芳, 2022. 江汉平原旱地和水田土壤镉的吸附与解吸特征及影响因素. 地球科学, 47(2): 544-555. doi: 10.3799/dqkx.2021.108
      段艳华, 2016. 浅层地下水系统中砷富集的季节性变化与机理研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学, 20-23.
      葛伟丽, 李元杰, 张春明, 等, 2022. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析. 水文地质工程地质, 49(4): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202204023.htm
      郭华明, 高志鹏, 修伟, 2022. 地下水氮循环与砷迁移转化耦合的研究现状和趋势. 水文地质工程地质, 49(3): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203017.htm
      郭海朋, 李文鹏, 王丽亚, 等, 2021. 华北平原地下水位驱动下的地面沉降现状与研究展望. 水文地质工程地质, 48(3): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202103021.htm
      刘锐, 2021. 黏土弱透水层形成过程中铁对有机碳迁移转化的影响机制(博士学位论文). 武汉: 中国地质大学, 57-77.
      刘锐, 马腾, 邱文凯, 等, 2019. 淤泥沉积物中有机碳的环境意义. 环境科学与技术, 42(1): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201901027.htm
      刘妍君, 马腾, 杜尧, 等, 2016. 一种泥质沉积物埋藏演化过程的模拟方法. 中国, 201610029479.0.
      毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      王莲阁, 2015. 温度变化对土壤有机碳矿化及其动力学特征的影响(硕士学位论文). 重庆: 西南大学, 17-23.
      王新田, 狄桂栓, 2019. 基于PS-InSAR的聊城东部地表沉降监测与分析. 测绘通报, (S2): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2019S2037.htm
      肖骢, 2019. 变渗透性粘性土弱透水层中砷的迁移转化机制: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学, 9-13.
      张婧玮, 梁杏, 葛勤, 等, 2017. 江汉平原第四系弱透水层渗透系数求算方法. 地球科学, 42(5): 761-770. doi: 10.3799/dqkx.2017.064
      张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础. 北京: 地质出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (244) PDF downloads(15) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return