• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Zhang Zhifei, Huang Man, Tang Zhicheng, 2024. Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle. Earth Science, 49(8): 2826-2838. doi: 10.3799/dqkx.2023.026
    Citation: Zhang Zhifei, Huang Man, Tang Zhicheng, 2024. Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle. Earth Science, 49(8): 2826-2838. doi: 10.3799/dqkx.2023.026

    Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle

    doi: 10.3799/dqkx.2023.026
    • Received Date: 2023-01-23
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • Discontinuities with different rock types are widely distributed in the Three Gorges reservoir area, and accurately evaluating the peak shear strengths of them is vital for rock mass stability analysis in this reservoir area. A batch of rock-like joint replicas with the same natural morphology but different joint wall strength combinations is prepared, and direct shear tests are conducted on them under constant normal stresses ranging from 0.3 to 3.0 MPa. Further, the joint wall strength combination coefficient (λ) is introduced to capture the combined effect of rock compressive strength and basic angle on the peak shear strength of discontinuities with different rock types. Testing results illustrate that the peak shear strengths of discontinuities with different rock types decrease non⁃linearly with increasing λ, and the decrease degree is mainly controlled by roughness while showing no obvious relationship with normal stress. A simple power law function is selected to analyze the correlation between the peak friction angles and λ, and an empirical strength criterion with the inclusion of three⁃dimensional morphology parameters is developed to predict the peak shear strengths of discontinuities with different rock types. Finally, natural samples collected from the Three Gorges reservoir area are used to further validate the reliability of the new criterion for evaluating the peak shear strength of natural discontinuities with different rock types. To some extent, the new criterion can provide a theoretical basis for the stability evaluation of rock masses containing discontinuities with different rock types in the Three Gorges reservoir area.

       

    • loading
    • Asadollahi, P., Tonon, F., 2010. Constitutive Model for Rock Fractures: Revisiting Barton's Empirical Model. Engineering Geology, 113(1/2/3/4): 11-32. https://doi.org/10.1016/j.enggeo.2010.01.007
      Alejano, L. R., Muralha, J., Ulusay, R., et al., 2018. ISRM Suggested Method for Determining the Basic Friction Angle of Planar Rock Surfaces by Means of Tilt Tests. Rock Mechanics and Rock Engineering, 51(12): 3853-3859. https://doi.org/10.1007/s00603-018-1627-6
      Ban, L. R., Qi, C. Z., Chen, H. X., et al., 2020. A New Criterion for Peak Shear Strength of Rock Joints with a 3D Roughness Parameter. Rock Mechanics and Rock Engineering, 53(4): 1755-1775. https://doi.org/10.1007/s00603-019-02007-z
      Bandis, S. C., Lumsden, A. C., Barton, N. R., 1983. Fundamentals of Rock Joint Deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6): 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
      Barton, N., Choubey, V., 1977. The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics and Rock Engineering, 10(1-2): 1-54. https://doi.org/10.1007/bf01261801
      Barton, N., 1973. Review of a New Shear Strength Criterion for Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(11): A220. https://doi.org/10.1016/0148-9062(74)90491-4
      Beer, A. J., Stead, D., Coggan, J. S., 2002. Technical Note Estimation of the Joint Roughness Coefficient (JRC) by Visual Comparison. Rock Mechanics and Rock Engineering, 35(1): 65-74. https://doi.org/10.1007/s006030 200009 doi: 10.1007/s006030200009
      Chen, X., Zeng, Y. W., Ye, Y., et al., 2021. A Simplified Form of Grasselli's 3D Roughness Measure Θ*max/(C + 1). Rock Mechanics and Rock Engineering, 54(8): 4329-4346. https://doi.org/10.1007/s00603-021-02512-0
      Fan, X., Deng, Z. Y., Cui, Z. M., et al., 2021. A New Peak Shear Strength Model for Soft-Hard Joint. Rock and Soil Mechanics, 42(7): 1861-1870 (in Chinese with English abstract).
      Grasselli, G., Wirth, J., Egger, P., 2002. Quantitative Three-Dimensional Description of a Rough Surface and Parameter Evolution with Shearing. International Journal of Rock Mechanics and Mining Sciences, 39(6): 789-800. https://doi.org/10.1016/s1365-1609(2)00070-9
      Grasselli, G., Egger, P., 2003. Constitutive Law for the Shear Strength of Rock Joints Based on Three-Dimensional Surface Parameters. International Journal of Rock Mechanics and Mining Sciences, 40(1): 25-40. https://doi.org/10.1016/s1365-1609(2)00101-6
      Ghazvinian, A. H., Taghichian, A., Hashemi, M., et al., 2010. The Shear Behavior of Bedding Planes of Weakness between Two Different Rock Types with High Strength Difference. Rock Mechanics and Rock Engineering, 43(1): 69-87. https://doi.org/10.1007/s00603-009-0030-8
      He, J. M., Wu, G., 1994. The Criterion For Shear Strength of Discontinuities with Different Rock Properties in Rock Mass. Journal of Chongqing University, 17(2): 105-110 (in Chinese with English abstract).
      Homand, F., Belem, T., Souley, M., 2001. Friction and Degradation of Rock Joint Surfaces under Shear Loads. International Journal for Numerical and Analytical Methods in Geomechanics, 25(10): 973-999. https://doi.org/10.1002/nag.163.abs
      Hong, E. S., Lee, J. S., Lee, I. M., 2008. Underestimation of Roughness in Rough Rock Joints. International Journal for Numerical and Analytical Methods in Geomechanics, 32(11): 1385-1403. https://doi.org/10.1002/nag.678
      Jang, H. S., Kang, S. S., Jang, B. A., 2014. Determination of Joint Roughness Coefficients Using Roughness Parameters. Rock Mechanics and Rock Engineering, 47(6): 2061-2073. https://doi.org/10.1007/s00603-013-0535-z
      Jing, L. L., Wei, Y. F., 2020. Calculation Model for the Shear Strength of Soft-Hard Joints Based on Three-Dimensional Morphology and Dilatancy Effect. Engineering Mechanics, 37(12): 180-190 (in Chinese with English abstract). doi: 10.6052/j.issn.1000-4750.2020.02.0109
      Kulatilake, P. H. S. W., Shou, G., Huang, T. H., et al., 1995. New Peak Shear Strength Criteria for Anisotropic Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(7): 673-697. https://doi.org/10.1016/0148-9062(95)00022-9
      Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract).
      Li, Y. C., Tang, C., Li, D. Q., et al., 2020. A New Shear Strength Criterion of Three-Dimensional Rock Joints. Rock Mechanics and Rock Engineering, 53(3): 1477-1483. https://doi.org/10.1007/s00603-019-01976-5
      Liu, Q. S., Tian, Y. C., Liu, D. F., et al., 2017. Updates to JRC-JCS Model for Estimating the Peak Shear Strength of Rock Joints Based on Quantified Surface Description. Engineering Geology, 228(1): 282-300. https://doi.org/10.1016/j.enggeo.2017.08.020
      Patton, F. D., 1996. Multiple Modes of Shear Failure in Rock. In: Proceedings of the 1st Congress of International Society of Rock Mechanics, Lisbon, 509-513.
      Song, L. B., Jiang, Q., Li, Y. H., et al., 2017. Improved JRC-JCS Shear Strength Formula for Soft-Hard Natural Joints. Rock and Soil Mechanics, 38(10): 2789-2798 (in Chinese with English abstract).
      Tang, H. M., Ma, S. Z., Liu, Y. R., et al., 2002. Stability and Control Measures of Zhaoshuling Landslide, Badong County, Three Gorges Reservoir. Earth Science, 27(5): 621-625 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.05.024
      Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China : Lessons Learned from Decades of Research. Engineering Geology, 261(1): 105267. https://doi.org/10.1016/j.enggeo. 2019. 105267 doi: 10.1016/j.enggeo.2019.105267
      Tang, Z. C., Xia, C. C., Song, Y. L., et al., 2012. Discussion about Grasselli's Peak Shear Strength Criterion for Rock Joints. Chinese Journal of Rock Mechanics and Engineering, 31(2): 356-364 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.02.015
      Tang, Z. C., Zhang, Z. F., Zuo, C. Q., et al., 2021. Peak Shear Strength Criterion for Mismatched Rock Joints: Revisiting JRC-JMC Criterion. International Journal of Rock Mechanics and Mining Sciences, 147(2): 104894. https://doi.org/10.1016/j.ijrmms.2021.104894
      Tang, Z. C., Wong, L. N. Y., 2016. New Criterion for Evaluating the Peak Shear Strength of Rock Joints under Different Contact States. Rock Mechanics and Rock Engineering, 49(4): 1191-1199. https://doi.org/10.1007/s00603-015-0811-1
      Tatone, B. S. A., Grasselli, G., 2009. A Method to Evaluate the Three-Dimensional Roughness of Fracture Surfaces in Brittle Geomaterials. Review of Scientific Instruments, 80(12): 125110. https://doi.org/10.1063/1.3266964
      Tatone, B. S. A., Grasselli, G., 2010. A New 2D Discontinuity Roughness Parameter and its Correlation with JRC. International Journal of Rock Mechanics and Mining Sciences, 47(8): 1391-1400. https://doi.org/10.1016/j.ijrmms.2010.06.006
      Tian, Y. C., Liu, Q. S., Liu, D. F., et al., 2018. Updates to Grasselli's Peak Shear Strength Model. Rock Mechanics and Rock Engineering, 51(7): 2115-2133. https://doi.org/10.1007/s00603-018-1469-2
      Wu, Q., Xu, Y. J., Tang, H. M., et al., 2018. Investigation on the Shear Properties of Discontinuities at the Interface between Different Rock Types in the Badong Formation, China. Engineering Geology, 245(4): 280-291. https://doi.org/10.1016/j.enggeo.2018.09.002
      Wu, Q., Jiang, Y. F., Tang, H. M., et al., 2020. Experimental and Numerical Studies on the Evolution of Shear Behaviour and Damage of Natural Discontinuities at the Interface between Different Rock Types. Rock Mechanics and Rock Engineering, 53(8): 3721-3744. https://doi.org/10.1007/s00603-020-02129-9
      Xu, D. P., Feng, X. T., Cui, Y. J., 2012. A Simple Shear Strength Model for Interlayer Shear Weakness Zone. Engineering Geology, 147-148(4): 114-123. https://doi.org/10.1016/j.enggeo.2012.07.016
      Xia, C. C., Tang, Z. C., Xiao, W. M., et al., 2014. New Peak Shear Strength Criterion of Rock Joints Based on Quantified Surface Description. Rock Mechanics and Rock Engineering, 47(2): 387-400. https://doi.org/10.1007/s00603-013-0395-6
      Yang, J., Rong, G., Hou, D., et al., 2016. Experimental Study on Peak Shear Strength Criterion for Rock Joints. Rock Mechanics and Rock Engineering, 49(3): 821-835. https://doi.org/10.1007/s00603-015-0791-1
      Zhao, J., 1997. Joint Surface Matching and Shear Strength Part B: JRC-JMC Shear Strength Criterion. International Journal of Rock Mechanics and Mining Sciences, 34(2): 179-185. https://doi.org/10.1016/s0148-9062(96)00063-0
      Zhao, Y. L., Zhang, L. Y., Wang, W. J., et al., 2020. Experimental Study on Shear Behavior and a Revised Shear Strength Model for Infilled Rock Joints. International Journal of Geomechanics, 20(9): 4020141. https://doi.org/10.1061/(asce)gm.1943-5622.0001781
      Zhang, Y. H., Wang, D. J., Tang, H. M., et al., 2016. Study of Shear Strength Characteristics of Heterogeneous Discontinuities Using PFC2D Simulation. Rock and Soil Mechanics, 37(4): 1031-1041 (in Chinese with English abstract).
      范祥, 邓志颖, 崔志猛, 等, 2021. 一种新的软-硬节理峰值剪切强度模型. 岩土力学, 42(7): 1861-1870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107011.htm
      贺建明, 吴刚, 1994. 岩体异性结构面的抗剪强度准则. 重庆大学学报, 17(2): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE402.017.htm
      金磊磊, 魏玉峰, 2020. 基于三维形貌和剪胀效应的软-硬节理抗剪强度模型. 工程力学, 37(12): 180-190. doi: 10.6052/j.issn.1000-4750.2020.02.0109
      亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
      宋磊博, 江权, 李元辉, 等, 2017. 软-硬自然节理的改进JRC-JCS剪切强度公式. 岩土力学, 38(10): 2789-2798. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710004.htm
      唐辉明, 马淑芝, 刘佑荣, 等, 2002. 三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究. 地球科学, 27(5): 621-625. http://www.earth-science.net/article/id/1175
      唐志成, 夏才初, 宋英龙, 等, 2012. Grasselli节理峰值抗剪强度公式再探. 岩石力学与工程学报, 31(2): 356-364. doi: 10.3969/j.issn.1000-6915.2012.02.015
      张雅慧, 汪丁建, 唐辉明, 等, 2016. 基于PFC2D数值试验的异性结构面剪切强度特性研究. 岩土力学, 37(4): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604016.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(3)

      Article views (396) PDF downloads(36) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return