Citation: | Wu Luyuan, Li Jianhui, Ma Dan, Wang Zifa, Zhang Jianwei, Yuan Chao, Feng Yi, Li Hui, 2023. Prediction for Rock Compressive Strength Based on Ensemble Learning and Bayesian Optimization. Earth Science, 48(5): 1686-1695. doi: 10.3799/dqkx.2023.029 |
Aladejare, A. E., 2020. Evaluation of Empirical Estimation of Uniaxial Compressive Strength of Rock Using Measurements from Index and Physical Tests. Journal of Rock Mechanics and Geotechnical Engineering, 12(2): 256-268. https://doi.org/10.1016/j.jrmge.2019.08.001
|
Arjmandpour, J., Hosseinitoudeshki, V., 2013. Estimation of Tensile Strength of Limestone from Some of Its Physical Properties via Simple Regression. Journal of Novel Applied Sciences, 2: 1041-1044.
|
Bieniawski, Z. T., 1974. Estimating the Strength of Rock Materials. Journal of the South African Institute of Mining and Metallurgy, 74(8): 312-320. http://saimm.org.za/Journal/v074n08p312.pdf
|
Breiman, L., 2001. Random Forests. Machine Learning, 45: 5-32. doi: 10.1023/A:1010933404324
|
Cargill, J. S., Shakoor, A., 1990. Evaluation of Empirical Methods for Measuring the Uniaxial Compressive Strength of Rock. International Journal of Rock Mechanics and Mining Sciences, 27(6): 495-503. doi:https://doi.org/ 10.1016/0148-9062(90)91001-N
|
Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, 785-794.
|
Çobanoğlu, İ., Çelik, S. B., 2008. Estimation of Uniaxial Compressive Strength from Point Load Strength, Schmidt Hardness and P-Wave Velocity. Bulletin of Engineering Geology and the Environment, 67: 491-498. doi: 10.1007/s10064-008-0158-x
|
Cui, J. X., Yang, B., 2018. Survey on Bayesian Optimization Methodology and Applications. Journal of Software, 29(10): 3068-3090 (in Chinese with English abstract). http://www.researchgate.net/publication/330103291_Survey_on_Bayesian_Optimization_Methodology_and_Applications
|
Culshaw, M. G., 2015. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007‒2014. Bulletin of Engineering Geology and the Environment, 74: 1499-1500. https://doi.org/10.1007/978-3-319-007713-0
|
Edelbro, C., 2003. Rock Mass Strength: A Review. Department of Civil Engineering Division of Rock Mechanics, Beijing.
|
Gokceoglu, C., 2002. A Fuzzy Triangular Chart to Predict the Uniaxial Compressive Strength of the Ankara Agglomerates from Their Petrographic Composition. Engineering Geology, 66: 39-51. https://doi.org/10.1016/S0013-7952(02)00023-6
|
Goudie, A. S., 2006. The Schmidt Hammer in Geomorphological Research. Progress in Physical Geography, 30: 703-718. doi:https://doi.org/ 10.1177/0309133306071954
|
Grima, M. A., Babuška, R., 1999. Fuzzy Model for the Prediction of Unconfined Compressive Strength of Rock Samples. International Journal of Rock Mechanics and Mining Sciences, 36: 339-349. doi:https://doi.org/ 10.1016/S0148-9062(99)00007-8
|
Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
|
He, M., 2019. Deep Convolutional Neural Network for Fast Determination of the Rock Strength Parameters Using Drilling Data. International Journal of Rock Mechanics and Mining Sciences, 123: 104084. https://doi.org/10.1016/j.ijrmms.2019.104084
|
Huang, F. M., Cao, Y., Fan, X. M., et al., 2021. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S02): 3227-3240 (in Chinese with English abstract).
|
Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
|
Huang, X. H., Li, Z. H., Deng, T., et al., 2022. Uranium Potential Evaluation of the Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 1-23 (in Chinese with English abstract).
|
Jahed Armaghani, D., 2016. Application of Several Non- Linear Prediction Tools for Estimating Uniaxial Compressive Strength of Granitic Rocks and Comparison of Their Performances. Engineering with Computers, 32: 189-206. doi: 10.1007/s00366-015-0410-5
|
Ke, G., 2017. Light GBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in Neural Information Processing Systems, New Orleans, 30.
|
Li, S., Chen, J., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z
|
Li, W., Tan, Z. Y., 2016. Comparison on Rock Strength Prediction Models Based on MLR and LS-SVM. Mining Research and Development, 36(11): 36-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYYK201611008.htm
|
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
|
Li, Y. R., Zhang, Y. L., Wang, J. C., 2022. Survey on Bayesian Optimization Methods for Hyper-Parameter Tuning. Computer Science, 49(S01): 86-92 (in Chinese with English abstract).
|
Mahmoodzadeh, A., 2022. Machine Learning Techniques to Predict Rock Strength Parameters. Rock Mechanics and Rock Engineering, 55: 1721-1741. doi: 10.1007/s00603-021-02747-x
|
Miah, M. I., 2020. Machine Learning Approach to Model Rock Strength: Prediction and Variable Selection with Aid of Log Data. Rock Mechanics and Rock Engineering, 53: 4691-4715. doi: 10.1007/s00603-020-02184-2
|
Mohamad, E. T., 2018. Rock Strength Estimation: A PSO-Based BP Approach. Neural Computing and Applications, 30: 1635-1646. doi: 10.1007/s00521-016-2728-3
|
Sagi, O., Rokach, L., 2018. Ensemble Learning: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8: e1249. https://doi.org/10.1002/widm.1249
|
Sarkar, K., 2010. Estimation of Strength Parameters of Rock Using Artificial Neural Networks. Bulletin of Engineering Geology and the Environment, 69: 599-606. doi: 10.1007/s10064-010-0301-3
|
Singh, T., 2012. Correlation between Point Load Index and Uniaxial Compressive Strength for Different Rock Types. Rock Mechanics and Rock Engineering, 45: 259-264. doi: 10.1007/s00603-011-0192-z
|
Tang, Z. L., Xu, Q. J., 2020. Rockburst Prediction Based on Nine Machine Learning Algorithms. Chinese Journal of Rock Mechanics and Engineering, 39(4): 773-781 (in Chinese with English abstract).
|
Wang, M., Wan, W., 2019. A New Empirical Formula for Evaluating Uniaxial Compressive Strength Using the Schmidt Hammer Test. International Journal of Rock Mechanics and Mining Sciences, 123: 104094. https://doi.org/10.1016/j.ijrmms.2019.104094
|
Wang, R., 2020. Application of Ultrasonic-Rebound Method in Fast Prediction of Rock Strength. Geotechnical and Geological Engineering, 38: 5915-5924. doi: 10.1007/s10706-020-01402-6
|
Yang, K., Yuan, L., Qi, L. G., et al., 2013. Establishing Predictive Model for Rock Uniaxial Compressive Strength of No. 11-2 Coal Seam Roof in Huainan Mining Area. Chinese Journal of Rock Mechanics and Engineering, 32(10): 1991-1998 (in Chinese with English abstract). http://www.researchgate.net/publication/287704654_Establishing_predictive_model_for_rock_uniaxial_compressive_strength_of_No11-2coal_seam_roof_in_Huainan_mining_area
|
Zhang, C. L., Zhang, C. P., Xu, J., 2015. Comparison Test of Rock Point Load Strength and Uniaxial Compressive Strength. Chinese Journal of Underground Space and Engineering, 11(S2): 447-451 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BASE2015S2014.htm
|
Zhang, W. G., He, Y. W., Wang, L. Q., et al., 2023. Machine Learning Solution for Landslide Susceptibility Based on Hydrographic Division: Case Study of Fengjie County in Chongqing. Earth Science, 48(5): 2024-2038 (in Chinese with English abstract).
|
Zhang, W. G., Li, H. R., Wu, C. Z., et al., 2021a. Stability Assessment of Underground Entry-Type Excavations Using Data-Driven RF and KNN Methods. Journal of Hunan University (Natural Sciences), 48(3): 164-172 (in Chinese with English abstract).
|
Zhang, W. G., Tang, L. B., Chen, F. Y., et al., 2021b. Prediction for TBM Penetration Rate Using Four Hyperparameter Optimization Methods and Random Forest Model. Journal of Basic Science and Engineering, 29(5): 1186-1200 (in Chinese with English abstract). doi: 10.1007/978-981-16-6835-7_8
|
Zhou, Z. H., 2016. Machine Learning. Tsinghua University Press, Beijing, 173(in Chinese).
|
Zhou, Z. H., 2021. Ensemble Learning, Machine Learning. Springer, Berlin, 181-210.
|
崔佳旭, 杨博, 2018. 贝叶斯优化方法和应用综述. 软件学报, 29(10): 3068-3090. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201810011.htm
|
郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
|
黄发明, 曹昱, 范宣梅, 等, 2021. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S02): 3227-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2023.htm
|
黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm
|
黄鑫怀, 李增华, 邓腾, 等, 2022. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学, 1-23.
|
李文, 谭卓英, 2016. 基于MLR与LS-SVM的岩石强度预测模型比较. 矿业研究与开发, 36(11): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201611008.htm
|
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
|
李亚茹, 张宇来, 王佳晨, 2022. 面向超参数估计的贝叶斯优化方法综述. 计算机科学, 49(S01): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1013.htm
|
汤志立, 徐千军, 2020. 基于9种机器学习算法的岩爆预测研究. 岩石力学与工程学报, 39(4): 773-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004011.htm
|
杨科, 袁亮, 祁连光, 等, 2013. 淮南矿区11-2煤顶板岩石单轴抗压强度预测模型构建. 岩石力学与工程学报, 32(10): 1991-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310005.htm
|
张春玲, 张传鹏, 徐静, 2015. 岩石点荷载强度与单轴抗压强度的对比试验. 地下空间与工程学报, 11(S2): 447-451. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2014.htm
|
仉文岗, 何昱苇, 王鲁琦, 等, 2023. 基于水系分区的滑坡易发性机器学习分析方法——以重庆市奉节县为例. 地球科学: 48(5): 2024-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305028.htm
|
仉文岗, 李红蕊, 巫崇智, 等, 2021a. 基于RF和KNN的地下采场开挖稳定性评估. 湖南大学学报(自然科学版), 48(3): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202103017.htm
|
仉文岗, 唐理斌, 陈福勇, 等, 2021b. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度. 应用基础与工程科学学报, 29(5): 1186-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202105009.htm
|
周志华, 2016. 机器学习. 北京: 清华大学出版社, 173.
|