• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 2
    Feb.  2023
    Turn off MathJax
    Article Contents
    Liang Jintong, Wen Huaguo, Li Xiaotian, Qiao Zhanfeng, She Min, Zhong Yijiang, Zhang Hao, 2023. Research Progress of Burial Dissolution and Modification of Carbonate Reservoirs and Fluid⁃Rock Simulation Experiments. Earth Science, 48(2): 814-834. doi: 10.3799/dqkx.2023.031
    Citation: Liang Jintong, Wen Huaguo, Li Xiaotian, Qiao Zhanfeng, She Min, Zhong Yijiang, Zhang Hao, 2023. Research Progress of Burial Dissolution and Modification of Carbonate Reservoirs and Fluid⁃Rock Simulation Experiments. Earth Science, 48(2): 814-834. doi: 10.3799/dqkx.2023.031

    Research Progress of Burial Dissolution and Modification of Carbonate Reservoirs and Fluid⁃Rock Simulation Experiments

    doi: 10.3799/dqkx.2023.031
    • Received Date: 2023-01-13
    • Publish Date: 2023-02-25
    • Deep to ultra⁃deep carbonate reservoirs have always been the focus of global oil and gas exploration at present, which are also the future fields of commercial hydrocarbon discovery in China. The importance of early epigenetic dissolution and/or late burial dissolution modification has been generally emphasized for the formation of high⁃quality carbonate reservoirs in deep burial environments. As an effective way to characterize the mechanism of reservoir dissolution, the fluid⁃rock dissolution simulation experiment can reproduce the interaction process between carbonate rocks and diagenetic fluids under actual geological conditions, thus providing a new perspective for determining the dissolution and modification of carbonate reservoirs. In this paper, the research progress of carbonate dissolution simulation experiments in recent years is systematically reviewed. In addition, the controlling factors of dissolution on the formation of deep to ultra⁃deep carbonate rocks are discussed from the perspective of experimental simulation. Firstly, the dissolution and modification of carbonate reservoirs are reviewed, and the techniques and methods of carbonate fluid⁃rock dissolution simulation experiments are summarized. Secondly, the law and understanding of carbonate reservoir dissolution and modification based on simulation experiments are sorted out. Finally, the application prospect of current research on deep to ultra⁃deep hydrocarbon exploration and carbon sequestration and recycling is prospected. Generally, the simulation experiment of carbonate dissolution is expected to provide a basis for discovering the secondary pore development zones during burial diagenesis and clarifying the favorable conditions for the occurrence of large⁃scale dissolution. Furthermore, this work can provide certain reference significance for future research on the formation mechanism and experimental simulation of carbonate reservoirs.

       

    • loading
    • Amadi, F. O., Major, R. P., Baria, L. R., 2012. Origins of Gypsum in Deep Carbonate Reservoirs: Implications for Hydrocarbon Exploration and Production. AAPG Bulletin, 96(2): 375-390. https://doi.org/10.1306/05101110179
      Appelo, C. A. J., Parkhurst, D. L., Post, V. E. A., 2014. Equations for Calculating Hydrogeochemical Reactions of Minerals and Gases such as CO2 at High Pressures and Temperatures. Geochimica et Cosmochimica Acta, 125, 49-67. https://doi.org/10.1016/j.gca.2013.10.003
      Bagni, F. L., Erthal, M. M., Tonietto, S. N., et al., 2022. Karstified Layers and Caves Formed by Superposed Epigenic Dissolution along Subaerial Unconformities in Carbonate Rocks-Impact on Reservoir-Scale Permeability. Marine and Petroleum Geology, 138. https://doi.org/10.1016/j.marpetgeo.2022.105523
      Baker, P. A., Kastner, M., 1981. Constraints on the Formation of Sedimentary Dolomite. Science, 213(4504): 214-216. https://doi.org/10.1126/science.213.4504.214
      Berner, R. A., 1978. Rate Control of Mineral Dissolution under Earth Surface Conditions. American Journal of Science, 278(9): 1235-1252. https://doi.org/10.2475/ajs.278.9.1235
      Bjørlykke, K., 2010. Petroleum Geoscience: from Sedimentary Environments to Rock Physics. Springer-Verlag, Berlin Heidelberg, 141-200.
      Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer During Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193-2214. https://doi.org/10.1306/04301211139
      Brantley, S. L., Conrad, C. F., 2008. Ananlysis of Rates of Geochemical Reactions. In: Brantley, S. L., Kubicki, J. D., White, A. F., eds., Kinetics of Water-Rock Interaction. Springer, New York, 1-38.
      Cai, C. F., Zhao, L., 2016. Thermochemical Sulfate Reduction and Its Effects on Petroleum Composition and Reservoir Quality: Advances and Problems. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 851-859, 806 (in Chinese with English abstract).
      Chen, D. Z., Qian, Y. X., 2017. Deep or Super-Deep Dolostone Reservoirs: Opportunities and Challenges. Journal of Palaeogeography, 19(2): 187-196 (in Chinese with English abstract).
      Chen, Q. L., Huang, C. G., 2018. Research Progress of Modification of Reservoirs by Dissolution in Sedimentary Rock. Advances in Earth Science, 33(11): 1112-1129 (in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2018.11.1112.
      Chen, Y., Wang, M., Liu, Q., et al., 2016. Effect of Salts and Common Ions on Solubility of Calcite and Its Geological Implications. Journal of China University of Petroleum (Edition of Natural Science), 40(6): 33-39 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2016.06.004
      Chorover, J., Brusseau, M. L., 2008. Kinetics of Sorption-Desorption. In: Brantley, S. L., Kubicki, J. D., White, A. F., eds., Kinetics of Water-Rock Interaction. Springer, New York, 109-149.
      Chou, I. M., Song, Y., Burruss, R. C., 2008. A New Method for Synthesizing Fluid Inclusions in Fused Silica Capillaries Containing Organic and Inorganic Material. Geochimica et Cosmochimica Acta, 72(21): 5217-5231. https://doi.org/10.1016/j.gca.2008.07.030
      Dai, Z. Y., Kan, A. Zhang, F. F., et al., 2015. A thermodynamic Model for the Solubility Prediction of Barite, Calcite, Gypsum, and Anhydrite, and the Association Constant Estimation of CaSO4 () Ion Pair Up to 250 ℃ and 22 000 psi. Journal of Chemical & Engineering Data, 60(3): 766-774. https://doi.org/10.1021/je5008873
      Ding, Q., He, Z. L., Wang J. B., et al., 2020. Simulation Experiment of Carbonate Reservoir Modification by Source Rock-Derived Acidic Fluids. Oil & Gas Geology, 41(1): 223-234 (in Chinese with English abstract).
      Ding, Q., He, Z. L., Wo Y. J., et al., 2017. Factors Controlling Carbonate Rock Dissolution under High Temperature and Pressure. Oil & Gas Geology, 38(4): 784-791 (in Chinese with English abstract).
      Ehrenberg, S. N., Eberli, G. P., Keramati, M., et al., 2006. Porosity-Permeability Relationships in Interlayered Limestone-Dolostone Reservoirs. AAPG Bulletin, 90(1): 91-114. https://doi.org/10.1306/08100505087
      Ehrenberg, S. N., Nadeau, P. H., 2005. Sandstone vs. Carbonate Petroleum Reservoirs: A Global Perspective on Porosity-Depth and Porosity-Permeability Relationships. AAPG Bulletin, 89(4): 435-445. https://doi.org/10.1306/11230404071
      Ehrenberg, S. N., Walderhaug, O., Bjørlykke, K., 2012. Carbonate Porosity Creation by Mesogenetic Dissolution: Reality or Illusion? AAPG Bulletin, 96(2): 217-233. https://doi.org/10.1306/05031110187
      Fan, M., He, Z. L., Li, Z. M., et al., 2011. Dissolution Window of Carbonate Rocks and Its Geological Significance. Oil & Gas Geology, 32(4): 499-505 (in Chinese with English abstract).
      Fan, M., Hu, K., Jiang, X. Q., et al., 2009. Effect of Acid Fluid on Carbonate Reservoir Reconstruction. Geochimica, 38(1): 20-26 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.01.002
      Fan, M., Jiang, X. Q., Liu, W. X., et al., 2007. Dissolution of Carbonate Rocks in CO2 Solution under the Different Temperatures. Acta Sedimentologica Sinica, 25(6): 825-830 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2007.06.002
      Fang, Y., Xie, S. Y., He, Z. L., et al., 2016. Thin Section-based Geochemical Dissolution Experiments of Ooid Carbonates. Earth Science. 41(5): 779-791 (in Chinese with English abstract).
      Feng, L. J., Jiang, Y. Q., Liu F., et al., 2021. Reservoir Characteristics and Main Controlling Factors of Oolitic Shoal Reservoir in Feixianguan Formation in the Southern Part of Kaijiang-Liangping Trough, Eastern Sichuan Basin. Acta Petrolei Sinica, 42(10): 1287-1298 (in Chinese with English abstract). doi: 10.7623/syxb202110003
      Garing, C., Gouze, P., Kassab, M., et al., 2015. Anti-Correlated Porosity-Permeability Changes During the Dissolution of Carbonate Rocks: Experimental Evidences and Modeling. Transport in Porous Media, 107(2): 595-621. https://doi.org/10.1007/s11242-015-0456-2
      Gautelier, M., Schott, J., Oelkers, E. H., 2007. An Experimental Study of Dolomite Dissolution Rates at 80 ℃ as a Function of Chemical Affinity and Solution Composition. Chemical Geology, 242(3-4): 509-517. https://doi.org/10.1016/j.chemgeo.2007.05.008
      Griffioen, J., Appelo, C. A. J., 1993. Nature and extent of carbonate precipitation during aquifer thermal energy storage. Applied Geochemistry, 8(2): 161-176. https://doi.org/10.1016/0883-2927(93)90032-C
      Goldstein, R. H., Franseen, E. K., Lipinski, C. J., 2013. Topographic and Sea Level Controls on Oolite-Microbialite-Coralgal Reef Sequences: The Terminal Carbonate Complex of Southeast Spain. AAPG Bulletin, 97(11): 1997-2034. https://doi.org/10.1306/06191312170
      Gong, Z. Z., Huang, Q. D., 1984. Field Corrosion Rate Tests on Carbonate Rocks. Carsologica Sinica, (2): 17-26 (in Chinese with English abstract).
      Guo, R. T., Ma, D. D., Zhang, Y. S., et al., 2019. Characteristics and Formation Mechanism of Overpressure Pore-Fracture Reservoirs for Upper Member of Xiaganchaigou Formation in the West of Yingxiong Ridge, Qaidam Basin, Acta Petrolei Sinica, 40(4): 411-422(in Chinese with English abstract).
      Han, B. P., 1993. Study on Micro-Corrosion Mechanism of Karst. Carsologica Sinica, 12(2): 97-102 (in Chinese with English abstract).
      Hao, F., Zhang, X. F., Wang, C. W., et al., 2015. The Fate of CO2 Derived from Thermochemical Sulfate Reduction (TSR) and Effect of TSR on Carbonate Porosity and Permeability, Sichuan Basin, China. Earth-Science Reviews, 141: 154-177. https://doi.org/10.1016/j.earscirev.2014.12.001
      He, Z. L., Ding, Q., Wo, Y. J., et al., 2017. Experiment of Carbonate Dissolution: Implication for High Quality Carbonate Reservoir Formation in Deep and Ultradeep Basins. Geofluids, 2017: 1-8. https://doi.org/10.1155/2017/8439259
      He, Z. L., Ma, Y. S., Zhang, J. T., 2020. Distribution, Genetic Mechanism and Control Factors of Dolomite and Dolomite Reservoirs in China. Oil & Gas Geology, 41(1): 1-14 (in Chinese with English abstract).
      He, Z. L., Ma, Y. S., Zhu, D. Y., et al., 2021. Theoretical and Technological Progress and Research Direction of Deep and Ultra-Deep Carbonate Reservoirs. Oil & Gas Geology, 42(3): 533-546 (in Chinese with English abstract).
      He, Z. L., Wei, X. C., Qian, Y. X., et al., 2011. Forming Mechanism and Distribution Prediction of Quality Marine Carbonate Reservoirs. Oil & Gas Geology, 32(4): 489-498 (in Chinese with English abstract).
      Hu, A. P., Shen, A. J., Yang, H. X., et al., 2019. Dolomite Genesis and Reservoir-Cap Rock Assemblage in Carbonate-Evaporite Paragenesis System. Petroleum Exploration and Development, 46(5): 916-928 (in Chinese with English abstract).
      Huang, K. J., Wang, W., Bao, Z. Y., et al., 2011. Dissolution and Alteration of Feixianguan Formation in the Sichuan Basin by Organic Acid Fluids under Burial Condition: Kinetic Dissolution Experiments. Geochimica, 40(3): 289-300 (in Chinese with English abstract).
      Huang, S. J., Cheng, X. Y., Zhao, J., et al., 2012. Test on the Dolomite Dissolution under Subaerial Temperature and Pressure. Carsologica Sinica, 31(4): 349-359 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2012.04.002
      Huang, S. J., Huang, P. P., Huang, K. K., et al., 2010. Chemical Thermodynamics Foundation of Retrograde Solubility for Carbonate: Solution Media Related to H2S and Comparing to CO2. Acta Sedimentologica Sinica, 28(1): 1-9 (in Chinese with English abstract).
      Huang, S. J., Yang, J. J., Zhang, W. Z., et al., 1996. Effects of Gypsum (or Anhydrite) on Dissolution of Dolomite under Different Temperatures and Pressures of Epigensis and Burial Diagenesis. Acta Sedimentologica Sinica, 14(1): 103-109 (in Chinese with English abstract).
      Hurley, N. F. and Budros, R., 1990. Albion-Scipio and Stoney Point Fields, U. S. A., Michigan Basin. In: Beaumont, E. A., Foster, N. H., eds., Stratigraphic Traps Ⅰ: AAPG Treatise of Petroleum Geology, Atlas of Oil and Gas Fields, Tulsa, 1-37
      James, W. S., 1984. Empirical Relation between Carbonate Porosity and Thermal Maturity: An Approach to Regional Porosity Prediction. AAPG Bulletin, 68(11): 1697-1703. https://doi.org/10.1306/ad46197b-16f7-11d7-8645000102c1865d
      Jenden, P. D., Titley, P. A, . Worden, R. H., 2015. Enrichment of Nitrogen and 13C of Methane in Natural Gases from the Khuff Formation, Saudi Arabia, Caused by Thermochemical Sulfate Reduction. Organic Geochemistry, 82: 54-68. https://doi.org/10.1016/j.orggeochem. 2015. 02.008 doi: 10.1016/j.orggeochem.2015.02.008
      Jia, C. Z., Pang X. Q., 2015. Research Processes and Development Directions of Deep Hydrocarbon Geological Theories. Acta Petrolei Sinica, 36(12): 1457-1469 (in Chinese with English abstract). doi: 10.7623/syxb201512001
      Jin, Z. K., Yu, K. H., 2011. Characteristics and Significance of the Burial Dissolution of Dolomite Reservoirs: Taking the Lower Palaeozoic in Eastern Tarim Basin as an Example. Petroleum Exploration and Development, 38(4): 428-434 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60045-1
      Jones, B., 2013. Microarchitecture of Dolomite Crystals as Revealed by Subtle Variations in Solubility: Implications for Dolomitization. Sedimentary Geology, 288: 66-80. doi: 10.1016/j.sedgeo.2013.01.004
      Jora, M. Z., de Souza, R. N., Lucas-Oliveira, E., et al., 2021. Static Acid Dissolution of Carbonate Outcrops Investigated by 1H NMR and X-Ray Tomography. Journal of Petroleum Science and Engineering, 207.
      Kang, Z. Y., Li, X. T., Tian, W., et al., 2022. Type Classification of Surface Water/Formation Water and Its Classified Method. Journal of Earth Sciences and Environment, 44(1): 65-77 (in Chinese with English abstract).
      Kastner, M., 1984. Sedimentology: Control of Dolomite Formation. Nature, 311(5985): 410-411.
      Kelemen, S. R., Walters, C. C., Kwiatek, P. J., et al., 2008. Distinguishing Solid Bitumens Formed by Thermochemical Sulfate Reduction and Thermal Chemical Alteration. Organic Geochemistry, 39(8): 1137-1143. https://doi.org/10.1016/j.orggeochem.2008.04.007
      Kurtzman, D., Jennings, J. W., Lucia, F. J., 2007. Dissolution Vugs in Fractured Carbonates: A Complication? Or Perhaps a Key for Simplifying Reservoir Characterization. Geophysical Research Letters, 34(20): 161-172. https://doi.org/10.1029/2007gl031229
      Lambert, L., Durlet, C., Loreau, J. P., et al., 2006. Burial Dissolution of Micrite in Middle East Carbonate Reservoirs (Jurassic–Cretaceous): Keys for Recognition and Timing. Marine and Petroleum Geology, 23(1): 79-92. https://doi.org/10.1016/j.marpetgeo.2005.04.003
      Lasaga, A. C., Lüttge, A., 2003. A Model for Crystal Dissolution. European Journal of Mineralogy, 15(4): 603-615. https://doi.org/10.1127/0935-1221/2003/0015-0603
      Lei, C., Chen, H. H., Su, A., et al., 2014. Study Progress on Buried Dissolution in Carbonate Rock. Fault-Block Oil and Gas Field, 21(2): 165-170 (in Chinese with English abstract).
      Li, K., Xie, S. Y., Lei, L., et al., 2018. Surface Micromorphology of Dissoluted Olitic Carbonate Rocks. Marine Origin Petroleum Geology, 23(4): 61-70 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2018.04.007
      Liu, H., Tan, X. C., Li, Y. H., et al., 2018. Occurrence and Conceptual Sedimentary Model of Cambrian Gypsum-Bearing Evaporites in the Sichuan Basin, SW China. Geoscience Frontiers, 9(4): 1179-1191. https://doi.org/10.1016/j.gsf.2017.06.006
      Liu, S. Q., Chen, S. R., Liu, B., et al., 2021. Pore Evolution of the Permian Qixia-Maokou Formations Dolomite in Sichuan Basin Based on In-Situ Dissolution Simulation Experiment. Oil & Gas Geology, 42(3): 702-716 (in Chinese with English abstract).
      Luquot, L., Gouze, P., 2009. Experimental Determination of Porosity and Permeability Changes Induced by Injection of CO2 into Carbonate Rocks. Chemical Geology, 265(1-2): 148-159. https://doi.org/10.1016/j.chemgeo.2009.03.028
      Machel, H. G., 2004. Concepts and Models of Dolomitization: a Critical Reappraisal. Geological Society, London, Special Publications, 235(1): 7-63. https://doi.org/10.1144/gsl.Sp.2004.235.01.02
      Mangane, P. O., Gouze, P., Luquot, L., 2013. Permeability Impairment of a Limestone Reservoir Triggered by Heterogeneous Dissolution and Particles Migration during CO2-Rich Injection. Geophysical Research Letters, 40(17): 4614-4619. doi: 10.1002/grl.50595
      Ma, Y. S., Cai, X. Y., Guo, X. S., et al., 2010a. The Discovery of Puguang Gas Field. Strategic Study of CAE, 12(10): 14-23 (in Chinese with English abstract).
      Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17(in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2010b. Formation Mechanism of Deep-Buried Carbonate Reservoir and Its Model of Three-Element Controlling Reservoir: A Case Study from the Puguang Oilfield in Sichuan. Acta Geologica Sinica, 84(8): 1087-1094 (in Chinese with English abstract).
      Ma, Y. S., He, Z. L., Zhao, P. R., et al., 2019. A New Progress in Formation Mechanism of Deep and Ultra-Deep Carbonate Reservoir. Acta Petrolei Sinica, 40(12): 1415-1425 (in Chinese with English abstract). doi: 10.7623/syxb201912001
      Moore, C. H., Wade, W. J., 2013. Natural Fracturing in Carbonate Reservoirs, Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework. Developments in Sedimentology, 285-300. https://doi.org/10.1016/b978-0-444-53831-4.00011-2
      Morad, D., Paganoni, M., AL Harthi, A., et al., 2018. Origin and Evolution of Microporosity in Packstones and Grainstones in a Lower Cretaceous Carbonate Reservoir, United Arab Emirates. Geological Society, London, Special Publications, 435(1): 47-66. https://doi.org/10.1144/sp435.20
      Morse, J. W., Arvidson, R. S., Luttge, A., 2007. Calcium Carbonate Formation and Dissolution. Chem Rev, 107(2): 342-81. https://doi.org/10.1021/cr050358j
      Newton, R. C., Manning, C. E., 2002. Experimental Determination of Calcite Solubility in H2O-NaCl Solutions at Deep Crust/Upper Mantle Pressures and Temperatures: Implications for Metasomatic Processes in Shear Zones. American Mineralogist, 87(10): 1401-1409. https://doi.org/10.2138/am-2002-1016
      Olanipekun, B. J., Azmy, K., 2016. Genesis and Morphology of Intracrystalline Nanopores and Mineral Micro Inclusions Hosted in Burial Dolomite Crystals: Application of Broad Ion Beam-Scanning Electron Microscope (BIB-SEM). Marine and Petroleum Geology, 74: 1-11. https://doi.org/10.1016/j.marpetgeo.2016.03.029
      Peng, J., Wang, X. L., Han, H. D., et al., 2018. Simulation for the Dissolution Mechanism of Cambrian Carbonate Rocks in Tarim Basin, NW China. Petroleum Exploration and Development, 45(3): 415-425 (in Chinese with English abstract).
      Perlmutter-Hayman, B., 1984. Equilibrium Constants of Chemical Reactions Involving Condensed Phases: Pressure Dependence and Choice of Standard State. Journal of Chemical Education, 61(9): 782-783. https://doi.org/10.1021/ed061p782
      Peter, A. S., 1977. Chalk Diagenesis and Its Relation to Petroleum Exploration: Oil from Chalks, a Modern Miracle? AAPG Bulletin, 61.
      Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., 1978. The Kinetics of Calcite Dissolution in CO2-Water Systems at 5 to 60c and 0.0 to 1.0 atm CO2. American Journal of Science, 278(2): 179-216.
      Pokrovsky, O. S., Golubev, S. V., Schott, J., 2005. Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 ℃ and 0 to 50 atm pCO2. Chemical Geology, 217(3-4): 239-255. https://doi.org/10.1016/j.chemgeo.2004.12.012
      Pokrovsky, O. S., Golubev, S. V., Schott J., et al., 2009. Calcite, Dolomite and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150 ℃ and 1 to 55 atm pCO2: New Constraints on CO2 Sequestration in Sedimentary Basins. Chemical Geology, 265(1/2): 20-32. https://doi.org/10.1016/j.chemgeo.2009.01.013
      Qajar, J., Arns, C. H., 2016. Characterization of Reactive Flow-Induced Evolution of Carbonate Rocks Using Digital Core Analysis: Part 1: Assessment of Pore-Scale Mineral Dissolution and Deposition. Journal of Contaminant Hydrology, 192: 60-86. doi: 10.1016/j.jconhyd.2016.06.005
      Qiao, Z. F., Lv, Y. Z., Chen, W., et al., 2021. Origin and Evolution of Burial Dissolved Vugs in Dolomite: Evidence from High-Temperature and High-Pressure Dissolution Kinetic Simulation. Marine Origin Petroleum Geology, 26(4): 326-334 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2021.04.005
      Robert, B., Halley., James W. S., 1983. High-Porosity Cenozoic Carbonate Rocks of South Florida: Progressive Loss of Porosity with Depth. AAPG Bulletin, 67(2): 191-200. https://doi.org/10.1306/03b5ace6-16d1-11d7-8645000102c1865d
      Sánchez-Román, M., McKenzie, J. A., Wagener, A. D. L. R., et al., 2009. Presence of Sulfate does not Inhibit Low-Temperature Dolomite Precipitation. Earth and Planetary Science Letters, 285(1-2): 131-139. https://doi.org/10.1016/j.epsl.2009.06.003
      Seyyedi, M., Mahmud, H. K. B., Verrall, M., et al., 2020. Pore Structure Changes Occur During CO2 Injection into Carbonate Reservoirs. Sci Rep, 10(1): 3624. https://doi.org/10.1038/s41598-020-60247-4
      Shabani, A., Zivar, D., 2020. Detailed Analysis of the Brine-Rock Interactions during Low Salinity Water Injection by a Coupled Geochemical-Transport Model. Chemical Geology, 537: 1-12. https://doi.org/10.1016/j.chemgeo.2020.119484
      She, M., Jiang, Y. M., Hu, A. P., 2020. The Progress and Application of Dissolution Simulation of Carbonate Rock. Marine Origin Petroleum Geology, 25(1): 12-21 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.01.002
      She, M., Shou, J. F., He, X. Y., et al., 2013. Experiment of Dissolution Mechanism of Carbonate Rocks: Surface Dissolution and Internal Dissolution. Marine Origin Petroleum Geology, 18(3): 55-61 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2013.03.007
      She, M., Shou, J. F., Shen, A. J., et al., 2014. Experimental Simulation of Dissolution and Alteration of Buried Organic Acid Fluid on Dolomite Reservoir. Journal of China University of Petroleum (Edition of Natural Science), 38(3): 10-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2014.03.002
      She, M., Shou, J. F., Shen, A. J., et al., 2016. Experimental Simulation of Dissolution Law and Porosity Evolution of Carbonate Rock. Petroleum Exploration and Development, 43(4): 564-572 (in Chinese with English abstract).
      She, M., Zhu, Y., Shen, A. J., et al., 2012. Simulation Experiment for the Dissolution of Carbonate Rocks of the Yingshan Formation on the Northern Slope of Tazhong Uplift, Carsologica Sinica, 31(3): 234-239(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2012.03.002
      Shen, A. J., Qiao, Z. F., She, M., et al., 2021. Prediction of Burial Dissolved Vugs in Carbonates Based on Dissolution Simulation: A Case Study of the Longwangmiao Formation Dolostone Reservoirs, Sichuan Basin. Oil & Gas Geology, 42(3): 690-701 (in Chinese with English abstract).
      Shen, A. J., She, M., Hu, A. P., 2015. Scale and Distribution of Marine Carbonate Burial Dissolutional Pores. Natural Gas Geoscience, 26(10): 1823-1830 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2015.10.1823
      Shen, A. J., Zhao, W. Z., Hu, A. P., et al., 2015. Major Factors Controlling the Development of Marine Carbonate Reservoirs. Petroleum Exploration and Development, 42(5): 545-554 (in Chinese with English abstract).
      Shi, L. X., Zhou, Z. F., Zhang, H., et al., 2022. Sources of SO42- and NO3- and Their Disturbances to Water Rock Processes in Karst Cave Systems. Earth Science, 47(2): 607-621 (in Chinese with English abstract).
      Shou, J. F., She, M., Shen, A. J., 2016. Experimental Simulation of Dissolution Effect of Carbonate Rock under Deep Burial Condition. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 860-867, 806 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.05.006
      Simms, M. J., 2014. Karst and Paleokarst. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/b978-0-12-409548-9.09370-2
      Smith, M. M., Hao, Y., Carroll, S. A., 2017. Development and Calibration of a Reactive Transport Model for Carbonate Reservoir Porosity and Permeability Changes Based on CO2 Core-Flood Experiments. International Journal of Greenhouse Gas Control, 57: 73-88. https://doi.org/10.1016/j.ijggc.2016.12.004
      Song, H. R., Huang, S. Y., 1993. Chemical Corrosion Effects of Carbonate Rock. Geoscience, 7(3): 363-371 (in Chinese with English abstract).
      Sun, C. H., Zhu, G. Y., Zheng, D. M., et al., 2016. Characteristics and Controlling Factors of Fracture-Cavity Carbonate Reservoirs in the Halahatang Area, Tarim Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 1028-1036 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.05.024
      Tan, X. C., Xiao, D., Chen, J. S., et al., 2015. New Advance and Enlightenment of Eogenetic Karstification. Journal of Palaeogeography, 17(4): 441-456 (in Chinese with English abstract).
      Taylor, K. C., Nasr-El-Din, H. A., Mehta, S., 2006. Anomalous Acid Reaction Rates in Carbonate Reservoir Rocks. SPE Journal, 11(4): 488-496. https://doi.org/10.2118/89417-pa
      Taylor, T. R., Giles, M. R., Hathon, L. A., et al., 2010. Sandstone Diagenesis and Reservoir Quality Prediction: Models, Myths, and Reality. AAPG Bulletin, 94(8): 1093-1132. https://doi.org/10.1306/04211009123
      Valencia, F. L, Laya, J. C., 2020. Deep-Burial Dissolution in an Oligocene-Miocene Giant Carbonate Reservoir (Perla Limestone), Gulf of Venezuela Basin: Implications on Microporosity Development. Marine and Petroleum Geology, 113: 1-57. https://doi.org/10.1016/j.marpetgeo.2019.104144
      Wang, X. L, Chou, I. M., Hu, W. X., et al., 2016. Kinetic Inhibition of Dolomite Precipitation: Insights from Raman Spectroscopy of Mg2+-SO42- Ion Pairing in MgSO4/MgCl2/NaCl Solutions at Temperatures of 25 to 200 ℃. Chemical Geology, 435: 10-21. https://doi.org/10.1016/j.chemgeo.2016.04.020
      Wang, X. L., Wan, Y., Hu, W. X., et al., 2017. Experimental Studies on the Interactions between Dolomite and SiO2-Rich Fluids: Implications for the Formation of Carbonate Reservoirs. Geological Review, 33(11): 1112-1129 (in Chinese with English abstract).
      Wen, H. G., Huo, F., Guo, P., et al., 2021. Advances and Prospects of Dolostone-Evaporite Paragenesis System. Acta Sedimentologica Sinica, 39(6): 1321-1343 (in Chinese with English abstract).
      William, J. W., Clyde, H. M. J., 1992. New Constraints on Carbonate Diagenesis from Integrated Sr and S Isotopic and Rare Earth Element Data, Jurassic Smackover Formation, U.S. Gulf Coast. Applied Geochemistry, 7(1): 87-91, https://doi.org/10.1016/0883-2927(92)90017-W
      Xiong, J. B., He D. F., 2022. Distribution Characteristics and Controlling Factors of Global Giant Carbonate Stratigraphic-Lithologic Oil and Gas Fields. Lithologic Reservoirs, 34(1): 187-200 (in Chinese with English abstract).
      Yan, W., Zhang, G. X., Zhang, L., et al., 2022. Carbonate Reservoirs Characteristics and Hydrocarbon Accumulation in Beikang Basin, Southern South China Sea. Earth Science, 47(7): 2549-2561 (in Chinese with English abstract).
      Yang, Y. K., Liu, B., Qin, S., et al., 2013. Dissolution Response Mechanism of the Carbonate Mineral with the Increase of Depth and Its Reservoir Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(5): 859-866 (in Chinese with English abstract).
      Yang, Y. K., Liu, B., Qin, S., et al., 2014. Re-Recognition of Deep Carbonate Dissolution Based on the Observation of In-Situ Simulation Experiment. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(2): 316-322 (in Chinese with English abstract).
      Yoo, H., Kim, Y., Lee, W., et al., 2018. An Experimental Study on Acid-Rock Reaction Kinetics Using Dolomite in Carbonate Acidizing. Journal of Petroleum Science and Engineering, 168: 478-494. doi: 10.1016/j.petrol.2018.05.041
      Zhang, S. M., Qin, S., Liu, B., et al., 2015. In-Situ Simulation Experiment of Carbonate-Hydrogen Sulfide Equilibrium System and Its Geological Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 51(4): 745-754 (in Chinese with English abstract).
      Zhang, S. M., Liu, B., Qin, S., et al., 2017. Origin of Deep Carbonate Reservoir in Northeastern Sichuan Basin: New Insights from In-Situ Hydrothermal Diamond Anvil Cell Experiments. Journal of Central South University, 24(6): 1450-1464. doi: 10.1007/s11771-017-3549-y
      Zhang, J., Hu, J. Y., Luo, P., et al., 2010. Master Control Factors of Deep High-Quality Dolomite Reservoirs and the Exploration Significance. Petroleum Exploration and Development, 37(2): 203-210 (in Chinese with English abstract).
      Zhang, N. N., He, D. F., Sun, Y. P., et al., 2014. Distribution Patterns and Controlling Factors of Giant Carbonate Rock Oil and Gas Fields Worldwide. China Petroleum Exploration, 19(6): 54-65 (in Chinese with English abstract).
      Zhang, T. F., Bao, Z. Y., Cui, Z. A., et al., 2012. Thermodynamic Analysis of Burial Dissolution of Carbonate Rocks and Its Geological Significance. Xinjiang Petroleum Geology, 33(2): 179-181. https://doi.org/1001-3873. 2012. 02-0179-03
      Zhao, W. Z., Shen, A. J., Hu, S. Y., et al., 2012. Geological Conditions and Distributional Features of Large-Scale Carbonate Reservoirs Onshore China. Petroleum Exploration and Development, 39(1): 1-12 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60010-X
      Zhao, X. F., Zhu, G. Y., Liu, Q. F., et al., 2007. Main Control Factors of Pore Development in Deep Marine Carbonate Reservoirs. Natural Gas Geoscience, 18(4): 514-521 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2007.04.006
      Zheng, J. F., Shen, A. J., Huang, L. L., et al., 2017. Pore Effect of Dolomite Reservoirs Based on Burial Dissolution Simulation: A Case Study of the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin. Petroleum Geology and Experiment, 39(5): 716-723 (in Chinese with English abstract).
      Zhu, G. Y., Sun, C. H., Zhao, B., et al., 2020. Formation, Evaluation Technology and Preservation Lower Limit of Ultra-Deep Ancient Fracture-Cavity Carbonate Reservoirs below 7000m. Natural Gas Geoscience, 31(5): 587-601 (in Chinese with English abstract).
      Zhu, G. Y., Zhang, S. C., Liang, Y. B., et al., 2006. Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR: An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin. Acta Petrologica Sinica, 22(8): 2182-2194 (in Chinese with English abstract).
      Zhu, W. H., Qu, X. Y., Qiu, L. W., et al., 2015. Characteristics and Erosion Mechanism of Carbonate in Acetic Acid and Hydrochloride Solutions, an Example from the Nanpu Depression. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 619-625 (in Chinese with English abstract).
      蔡春芳, 赵龙, 2016. 热化学硫酸盐还原作用及其对油气与储集层的改造作用: 进展与问题. 矿物岩石地球化学通报, 35(5): 851-859, 806. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605009.htm
      陈代钊, 钱一雄, 2017. 深层—超深层白云岩储集层: 机遇与挑战. 古地理学报, 19(2): 187-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201702001.htm
      陈启林, 黄成刚, 2018. 沉积岩中溶蚀作用对储集层的改造研究进展. 地球科学进展, 33(11): 1112-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201811003.htm
      陈勇, 王淼, 刘庆, 等, 2016. 盐效应和共同离子效应对方解石溶解度的影响及其地质意义. 中国石油大学学报(自然科学版), 40(6): 33-39. doi: 10.3969/j.issn.1673-5005.2016.06.004
      丁茜, 何治亮, 王静彬, 等, 2020. 生烃伴生酸性流体对碳酸盐岩储层改造效应的模拟实验. 石油与天然气地质, 41(1): 223-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001021.htm
      丁茜, 何治亮, 沃玉进, 等, 2017. 高温高压条件下碳酸盐岩溶蚀过程控制因素. 石油与天然气地质, 38(4): 784-791. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704015.htm
      范明, 何治亮, 李志明, 等, 2011. 碳酸盐岩溶蚀窗的形成及地质意义. 石油与天然气地质, 32(4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104005.htm
      范明, 胡凯, 蒋小琼, 等, 2009. 酸性流体对碳酸盐岩储层的改造作用. 地球化学, 38(1): 20-26. doi: 10.3321/j.issn:0379-1726.2009.01.002
      范明, 蒋小琼, 刘伟新, 等, 2007. 不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用. 沉积学报, 25(6): 825-830. doi: 10.3969/j.issn.1000-0550.2007.06.002
      方旸, 谢淑云, 何治亮, 等, 2016. 基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀. 地球科学, 41(5): 779-791. doi: 10.3799/dqkx.2016.066
      冯林杰, 蒋裕强, 刘菲, 等, 2021. 川东地区开江-梁平海槽南段飞仙关组鲕滩储层特征及主控因素. 石油学报, 42(10): 1287-1298. doi: 10.7623/syxb202110003
      龚自珍, 黄庆达, 1984. 碳酸盐岩岩块野外溶蚀速度试验. 中国岩溶, (2): 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198402002.htm
      郭荣涛, 马达德, 张永庶, 等, 2019. 柴达木盆地英西地区下干柴沟组上段超压孔缝型储层特征及形成机理. 石油学报, 40(4): 411-422. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201904003.htm
      韩宝平, 1993. 喀斯特微观溶蚀机理研究. 中国岩溶, 12(2): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR199302000.htm
      何治亮, 马永生, 张军涛, 等, 2020. 中国的白云岩与白云岩储层: 分布、成因与控制因素. 石油与天然气地质, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htm
      何治亮, 马永生, 朱东亚, 等, 2021. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向. 石油与天然气地质, 42(3): 533-546. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103002.htm
      何治亮, 魏修成, 钱一雄, 等, 2011. 海相碳酸盐岩优质储层形成机理与分布预测. 石油与天然气地质, 32(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104004.htm
      胡安平, 沈安江, 杨翰轩, 等, 2019. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合. 石油勘探与开发, 46(5): 916-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905011.htm
      黄康俊, 王炜, 鲍征宇, 等, 2011. 埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用: 溶解动力学实验研究. 地球化学, 40(3): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201103009.htm
      黄思静, 成欣怡, 赵杰, 等, 2012. 近地表温压条件下白云岩溶解过程的实验研究. 中国岩溶, 31(4): 349-359. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201204003.htm
      黄思静, 黄培培, 黄可可, 等, 2010. 碳酸盐倒退溶解模式的化学热力学基础——与H2S有关的溶解介质及其与CO2的对比. 沉积学报, 28(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001002.htm
      黄思静, 杨俊杰, 张文正, 等, 1996. 石膏对白云岩溶解影响的实验模拟研究. 沉积学报, 14(1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB601.011.htm
      贾承造, 庞雄奇, 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457 -1469. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201512001.htm
      金振奎, 余宽宏, 2011. 白云岩储集层埋藏溶蚀作用特征及意义——以塔里木盆地东部下古生界为例. 石油勘探与开发, 38(4): 428-434. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201104007.htm
      康志勇, 李晓涛, 田文, 等, 2022. 地表水/地层水水型分类及其划分方法. 地球科学与环境学报, 44(1): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202201004.htm
      雷川, 陈红汉, 苏奥, 等, 2014. 碳酸盐岩埋藏溶蚀研究进展. 断块油气田, 21(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201402008.htm
      李开, 谢淑云, 雷蕾, 等, 2018. 鲕粒碳酸盐岩溶蚀的微观形貌特征实验研究. 海相油气地质, 23(4): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201804007.htm
      刘诗琦, 陈森然, 刘波, 等, 2021. 基于原位溶蚀模拟实验的四川盆地二叠系栖霞组-茅口组白云岩孔隙演化. 石油与天然气地质, 42(3): 702-716. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103016.htm
      马永生, 蔡勋育, 郭旭升, 等, 2010a. 普光气田的发现. 中国工程科学, 12(10): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201010005.htm
      马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
      马永生, 蔡勋育, 赵培荣, 等, 2010b. 深层超深层碳酸盐岩优质储层发育机理和"三元控储"模式——以四川普光气田为例. 地质学报, 84(8): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008002.htm
      马永生, 何治亮, 赵培荣, 等, 2019. 深层-超深层碳酸盐岩储层形成机理新进展. 石油学报, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm
      彭军, 王雪龙, 韩浩东, 等, 2018. 塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验. 石油勘探与开发, 45(3): 415-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803007.htm
      乔占峰, 吕玉珍, 陈薇, 等, 2021. 白云岩埋藏溶蚀孔洞的形成机理与演化——来自高温高压溶蚀模拟的证据. 海相油气地质, 26(4): 326-334. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202104005.htm
      佘敏, 蒋义敏, 胡安平, 等, 2020. 碳酸盐岩溶蚀模拟实验技术进展及应用. 海相油气地质, 25(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202001002.htm
      佘敏, 寿建峰, 贺训云, 等, 2013. 碳酸盐岩溶蚀机制的实验探讨: 表面溶蚀与内部溶蚀对比. 海相油气地质, 18(3): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201303008.htm
      佘敏, 寿建峰, 沈安江, 等, 2014. 埋藏有机酸性流体对白云岩储层溶蚀作用的模拟实验. 中国石油大学学报(自然科学版), 38(3): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201403002.htm
      佘敏, 寿建峰, 沈安江, 等, 2016. 碳酸盐岩溶蚀规律与孔隙演化实验研究. 石油勘探与开发, 43(4): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604009.htm
      佘敏, 朱吟, 沈安江, 等, 2012. 塔中北斜坡鹰山组碳酸盐岩溶蚀的模拟实验研究. 中国岩溶, 31(3): 234-239. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201203002.htm
      沈安江, 乔占峰, 佘敏, 等, 2021. 基于溶蚀模拟实验的碳酸盐岩埋藏溶蚀孔洞预测方法——以四川盆地龙王庙组储层为例. 石油与天然气地质, 42(3): 690-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103015.htm
      沈安江, 佘敏, 胡安平, 等, 2015a. 海相碳酸盐岩埋藏溶孔规模与分布规律初探. 天然气地球科学, 26(10): 1823-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201510002.htm
      沈安江, 赵文智, 胡安平, 等, 2015b. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发, 42(5): 545-554. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505001.htm
      石亮星, 周忠发, 张恒, 等, 2022. 岩溶洞穴系统SO42-、NO3-来源及其对水岩作用的影响. 地球科学, 47(2): 607-621. doi: 10.3799/dqkx.2021.115
      寿建峰, 佘敏, 沈安江, 2016. 深层条件下碳酸盐岩溶蚀改造效应的模拟实验研究. 矿物岩石地球化学通报, 35(5): 860-867, 806. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605011.htm
      宋焕荣, 黄尚瑜, 1993. 碳酸盐岩化学溶蚀效应. 现代地质, 7(3): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199303014.htm
      孙崇浩, 朱光有, 郑多明, 等, 2016. 塔里木盆地哈拉哈塘地区超深碳酸盐岩缝洞型储集层特征与控制因素. 矿物岩石地球化学通报, 35(5): 1028-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605037.htm
      谭秀成, 肖笛, 陈景山, 等, 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报, 17(4): 441-456. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504002.htm
      王小林, 万野, 胡文瑄, 等, 2017. 白云石与富硅流体的水——岩反应实验及其储层地质意义. 地质论评, 63(6): 1639-1652. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706021.htm
      文华国, 霍飞, 郭佩, 等, 2021. 白云岩——蒸发岩共生体系研究进展及展望. 沉积学报, 39(6): 1321-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202106002.htm
      熊加贝, 何登发, 2022. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素. 岩性油气藏, 34(1): 187-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202201018.htm
      鄢伟, 张光学, 张莉, 等, 2022. 南海南部北康盆地碳酸盐岩储层特征及油气成藏. 地球科学, 47(7): 2549-2561. doi: 10.3799/dqkx.2022.073
      杨云坤, 刘波, 秦善, 等, 2013. 碳酸盐矿物随埋深增加的溶蚀响应机制及其储层意义. 北京大学学报(自然科学版), 49(5): 859-866. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201305014.htm
      杨云坤, 刘波, 秦善, 等, 2014. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识. 北京大学学报(自然科学版), 50(2): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201402015.htm
      张单明, 秦善, 刘波, 等, 2015. 碳酸盐岩-H2S平衡体系原位溶蚀模拟实验及其地质意义. 北京大学学报(自然科学版), 51(4): 745-754. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201504021.htm
      张静, 胡见义, 罗平, 等, 2010. 深埋优质白云岩储集层发育的主控因素与勘探意义. 石油勘探与开发, 37(2): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002012.htm
      张宁宁, 何登发, 孙衍鹏, 等, 2014. 全球碳酸盐岩大油气田分布特征及其控制因素. 中国石油勘探, 19(6): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201406007.htm
      赵文智, 沈安江, 胡素云, 等, 2012. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征. 石油勘探与开发, 39(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201002.htm
      赵雪凤, 朱光有, 刘钦甫, 等, 2007. 深部海相碳酸盐岩储层孔隙发育的主控因素研究. 天然气地球科学, 18(4): 514-521. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200704006.htm
      郑剑锋, 沈安江, 黄理力, 等, 2017. 基于埋藏溶蚀模拟实验的白云岩储层孔隙效应研究--以塔里木盆地下寒武统肖尔布拉克组为例. 石油实验地质, 39(5): 716-723. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201705020.htm
      朱光有, 孙崇浩, 赵斌, 等, 2020. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限. 天然气地球科学, 31(5): 587-601. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005001.htm
      朱光有, 张水昌, 梁英波, 等, 2006. TSR对深部碳酸盐岩储层的溶蚀改造--四川盆地深部碳酸盐岩优质储层形成的重要方式. 岩石学报, 22(8): 2182-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608007.htm
      朱文慧, 曲希玉, 邱隆伟, 等, 2015. 盐酸及乙酸介质中的碳酸盐岩溶蚀表面特征及机理——以南堡凹陷为例. 矿物岩石地球化学通报, 34(3): 619-625. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201503023.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (1553) PDF downloads(149) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return